IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp622-633.html
   My bibliography  Save this article

Novel CO2-negative design of palm oil-based polygeneration systems

Author

Listed:
  • Wu, Wei
  • Supankanok, Rasa
  • Chandra-Ambhorn, Walairat
  • Taipabu, Muhammad Ikhsan

Abstract

A palm oil-based polygeneration system (POPS), which is a combination of a fixed bed hydrotreating reactor (FBHTR), a three-phase separator, and a series of cryogenic separators, is co-production process of green diesel and liquefied petroleum gas (LPG) named Design 1. The FBHTR model is validated by experiment data and its optimal operating parameters are determined by solving the response surface methodology-based optimization algorithm. Two CO2-negative designs for the POPS named Designs 2 and 3 adopt approaches of (i) the evacuated tube solar collector (ETSC) for reducing 35% flue gas from the furnace, (ii) the amine-based CO2 capture process coupling with pre- or post-separation system for producing the high-purity CO2 product, and (iii) the heat integration design for reducing the energy duties of hot/cold utilities. Design 2 is validated to achieve the maximum negative net CO2 emissions. Design 3 not only ensures the negative net CO2 emissions, but also it produces three high-purity products (98.3% green diesel, 100% LPG, and 99.9% CO2) simultaneously.

Suggested Citation

  • Wu, Wei & Supankanok, Rasa & Chandra-Ambhorn, Walairat & Taipabu, Muhammad Ikhsan, 2023. "Novel CO2-negative design of palm oil-based polygeneration systems," Renewable Energy, Elsevier, vol. 203(C), pages 622-633.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:622-633
    DOI: 10.1016/j.renene.2022.12.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122018997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, H. & Lee, U. & Wang, M., 2020. "Life-cycle energy use and greenhouse gas emissions of palm fatty acid distillate derived renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Yan, Yue & Sun, Mei & Guo, Zhilong, 2022. "How do carbon cap-and-trade mechanisms and renewable portfolio standards affect renewable energy investment?," Energy Policy, Elsevier, vol. 165(C).
    3. Tirado, Alexis & Alvarez-Majmutov, Anton & Ancheyta, Jorge, 2022. "Modeling and simulation of a multi-bed industrial reactor for renewable diesel hydroprocessing," Renewable Energy, Elsevier, vol. 186(C), pages 173-182.
    4. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    5. Noiroj, Krisada & Intarapong, Pisitpong & Luengnaruemitchai, Apanee & Jai-In, Samai, 2009. "A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil," Renewable Energy, Elsevier, vol. 34(4), pages 1145-1150.
    6. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    7. Tan, Raymond R. & Aviso, Kathleen B. & Foo, Dominic C.Y. & Lee, Jui-Yuan & Ubando, Aristotle T., 2019. "Optimal synthesis of negative emissions polygeneration systems with desalination," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    2. Barbosa, Ian V. & Scapim, Letícia A. & Cavalcante, Raquel M. & Young, André F., 2023. "Industrial production of green diesel in Brazil: Process simulation and economic perspectives," Renewable Energy, Elsevier, vol. 219(P2).
    3. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    4. George Petropoulos & John Zafeiropoulos & Eleana Kordouli & Alexis Lycourghiotis & Christos Kordulis & Kyriakos Bourikas, 2023. "Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO 2 Catalysts for Renewable Diesel Production," Energies, MDPI, vol. 16(11), pages 1-15, May.
    5. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    6. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    7. Abul Kalam Azad & Abhijaysinh Chandrasinh Jadeja & Arun Teja Doppalapudi & Nur Md Sayeed Hassan & Md Nurun Nabi & Roshan Rauniyar, 2024. "Design and Simulation of the Biodiesel Process Plant for Sustainable Fuel Production," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    8. Saifuddin Nomanbhay & Mei Yin Ong & Kit Wayne Chew & Pau-Loke Show & Man Kee Lam & Wei-Hsin Chen, 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review," Energies, MDPI, vol. 13(6), pages 1-23, March.
    9. Mohamed, Mohamed Mokhatr & Bayoumy, W.A. & El-Faramawy, Hossam & El-Dogdog, Wagdy & Mohamed, Ashraf A., 2020. "A novel α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst for efficient biodiesel production from waste oil: Kinetic and thermal studies," Renewable Energy, Elsevier, vol. 160(C), pages 450-464.
    10. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    11. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    12. Janbarari, Seyed Reza & Ahmadian Behrooz, Hesam, 2020. "Optimal and robust synthesis of the biodiesel production process using waste cooking oil from different feedstocks," Energy, Elsevier, vol. 198(C).
    13. Qian, Kun & Shen, Xiang & Wang, Yanxin & Gao, Qiang & Ding, Hongwei, 2015. "In-situ transesterification of Jatropha oil over an efficient solid alkali using low leaching component supported on industrial silica gel," Energy, Elsevier, vol. 93(P2), pages 2251-2257.
    14. Zhang, Yue-Jun & Liu, Jing-Yue & Woodward, Richard T., 2023. "Has Chinese Certified Emission Reduction trading reduced rural poverty in China?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(03), April.
    15. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    16. Savvas L. Douvartzides & Aristidis Tsiolikas & Nikolaos D. Charisiou & Manolis Souliotis & Vayos Karayannis & Nikolaos Taousanidis, 2022. "Energy and Exergy-Based Screening of Various Refrigerants, Hydrocarbons and Siloxanes for the Optimization of Biomass Boiler–Organic Rankine Cycle (BB–ORC) Heat and Power Cogeneration Plants," Energies, MDPI, vol. 15(15), pages 1-26, July.
    17. He, Haonan & Chen, Wenze & Zhou, Qi, 2023. "Subsidy allocation strategies for power industry’s clean transition under Bayesian Nash equilibrium," Energy Policy, Elsevier, vol. 182(C).
    18. Melad Atrash & Karen Molina & El-Or Sharoni & Gilbert Azwat & Marina Nisnevitch & Yael Albo & Faina Nakonechny, 2023. "Toward Efficient Continuous Production of Biodiesel from Brown Grease," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    19. Zhou, Xianyang & Zhou, Dequn & Ding, Hao & Zhao, Siqi & Wang, Qunwei, 2023. "Low-carbon transition of China's provincial power sector under renewable portfolio standards and carbon cap," Energy, Elsevier, vol. 283(C).
    20. Guido Busca, 2021. "Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes," Energies, MDPI, vol. 14(13), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:622-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.