IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021913.html
   My bibliography  Save this article

Insights into the effect of various supports on hydrothermal liquefaction of food waste over iron-oxide nano-catalysts

Author

Listed:
  • Ebrahim, Sayed Ahmed
  • Jiang, Xin
  • Kodra, Oltion
  • Couillard, Martin
  • Baranova, Elena A.
  • Singh, Devinder

Abstract

This work investigates the effect of supported iron-oxide nano-catalysts for hydrothermal conversion of food waste. The studied supports were Vulcan carbon (VC), CeO2, ZSM-5 and amorphous SiO2-Al2O3. Catalytic hydrothermal liquefaction experiments were carried out in a batch reactor at 16 MPa and 300 °C maintained for 1 h. Different fractions of Fe(0), Fe2+ and Fe3+ alter its tendency toward deoxygenation, hydrogenations and condensation reactions, which influence the bio-crude yield, elemental compositions, and energy recoveries. The fresh and spent catalysts were characterized using X-ray photoelectron spectroscopy, physisorption analysis, thermogravimetric analysis, transmission and scanning electron microscopy. It was found that the change in catalyst support influences HTL pathways and product compositions. The results reveal that the inclusion of FeOx catalyst on Vulcan carbon, SiO2-Al2O3 and ZSM-5 supports can increase the bio-crude yield by ~7–9 wt% compared to their FeOx-free yields. The increase in bio-crude yield was associated with the decrease in the surface ratios of Fe3+/Fe2+ at the range of 0.8–1.6. In overall, catalysts that had higher tendencies in converting amines into oil-soluble compounds increased the bio-crude yield, while catalysts that promoted dehydration and decarboxylation route decreased the bio-crude yield. The maximum energy recovery in bio-crude was obtained using FeOx/SiO2-Al2O3 catalyst with values ~95 %. The deactivation of catalysts was associated with the increase in Ca and P poisonous elements on catalytic sites, which decreased the energy recovery of recycled FeOx/SiO2-Al2O3 to ~85 % after three cycles.

Suggested Citation

  • Ebrahim, Sayed Ahmed & Jiang, Xin & Kodra, Oltion & Couillard, Martin & Baranova, Elena A. & Singh, Devinder, 2025. "Insights into the effect of various supports on hydrothermal liquefaction of food waste over iron-oxide nano-catalysts," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021913
    DOI: 10.1016/j.apenergy.2024.124808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    2. Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
    4. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    5. Tamar Makov & Alon Shepon & Jonathan Krones & Clare Gupta & Marian Chertow, 2020. "Social and environmental analysis of food waste abatement via the peer-to-peer sharing economy," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    7. Cheng, Feng & Cui, Zheng & Chen, Lin & Jarvis, Jacqueline & Paz, Neil & Schaub, Tanner & Nirmalakhandan, Nagamany & Brewer, Catherine E., 2017. "Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry," Applied Energy, Elsevier, vol. 206(C), pages 278-292.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    2. Dylan J. Cronin & Senthil Subramaniam & Casper Brady & Alan Cooper & Zhibin Yang & Joshua Heyne & Corinne Drennan & Karthikeyan K. Ramasamy & Michael R. Thorson, 2022. "Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes," Energies, MDPI, vol. 15(4), pages 1-17, February.
    3. Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
    4. SundarRajan, P. & Gopinath, K.P. & Arun, J. & GracePavithra, K. & Adithya Joseph, A. & Manasa, S., 2021. "Insights into valuing the aqueous phase derived from hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Mei Yin Ong & Saifuddin Nomanbhay, 2022. "Optimization Study on Microwave-Assisted Hydrothermal Liquefaction of Malaysian Macroalgae Chaetomorpha sp. for Phenolic-Rich Bio-Oil Production," Energies, MDPI, vol. 15(11), pages 1-22, May.
    7. Jogi, Ramakrishna & Samikannu, Ajaikumar & Mäki-Arvela, Päivi & Virtanen, Pasi & Hemming, Jarl & Smeds, Annika & Mukesh, Chandrakant & Lestander, Torbjörn A. & Xu, Chunlin & Mikkola, Jyri-Pekka, 2024. "Liquefaction of lignocellulosic biomass into phenolic monomers and dimers over multifunctional Pd/NbOPO4 catalyst," Renewable Energy, Elsevier, vol. 233(C).
    8. Wądrzyk, Mariusz & Grzywacz, Przemysław & Janus, Rafał & Michalik, Marek, 2021. "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, Elsevier, vol. 179(C), pages 248-261.
    9. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    10. Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
    11. Chand, Rishav & Babu Borugadda, Venu & Qiu, Michael & Dalai, Ajay K., 2019. "Evaluating the potential for bio-fuel upgrading: A comprehensive analysis of bio-crude and bio-residue from hydrothermal liquefaction of agricultural biomass," Applied Energy, Elsevier, vol. 254(C).
    12. Xu, Donghai & Wang, Yang & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Wu, Zhiqiang, 2019. "Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production," Renewable Energy, Elsevier, vol. 138(C), pages 1143-1151.
    13. Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
    14. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    15. Xu, Donghai & Guo, Shuwei & Liu, Liang & Lin, Guike & Wu, Zhiqiang & Guo, Yang & Wang, Shuzhong, 2019. "Heterogeneous catalytic effects on the characteristics of water-soluble and water-insoluble biocrudes in chlorella hydrothermal liquefaction," Applied Energy, Elsevier, vol. 243(C), pages 165-174.
    16. Ana Gonçalves & Jaime Filipe Puna & Luís Guerra & José Campos Rodrigues & João Fernando Gomes & Maria Teresa Santos & Diogo Alves, 2019. "Towards the Development of Syngas/Biomethane Electrolytic Production, Using Liquefied Biomass and Heterogeneous Catalyst," Energies, MDPI, vol. 12(19), pages 1-21, October.
    17. Masoumi, Shima & Boahene, Philip E. & Dalai, Ajay K., 2021. "Biocrude oil and hydrochar production and characterization obtained from hydrothermal liquefaction of microalgae in methanol-water system," Energy, Elsevier, vol. 217(C).
    18. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Moreno-Sader, K. & Meramo-Hurtado, S.I. & González-Delgado, A.D., 2019. "Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 42-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.