IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp582-596.html
   My bibliography  Save this article

Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies

Author

Listed:
  • Tsiotsias, Anastasios I.
  • Hafeez, Sanaa
  • Charisiou, Nikolaos D.
  • Al-Salem, Sultan M.
  • Manos, George
  • Constantinou, Achilleas
  • AlKhoori, Sara
  • Sebastian, Victor
  • Hinder, Steven J.
  • Baker, Mark A.
  • Polychronopoulou, Kyriaki
  • Goula, Maria A.

Abstract

The selective deoxygenation of palm oil to produce green diesel has been investigated over Ni catalysts supported on ZrO2 (Ni/Zr) and CeO2–ZrO2 (Ni/CeZr) supports. The modification of the support with CeO2 acted to improve the Ni dispersion and oxygen lability of the catalyst, while reducing the overall surface acidity. The Ni/CeZr catalyst exhibited higher triglyceride (TG) conversion and yield for the desirable C15–C18 hydrocarbons, as well as improved stability compared to the unmodified Ni/Zr catalyst, with TG conversion and C15–C18 yield remaining above 85% and 80% respectively during 20 h of continuous operation at 300 oC. The high C17 yields also revealed the dominance of the deCOx (decarbonylation/decarboxylation) pathway. A fully comprehensive process simulation model has been developed to validate the experimental findings in this study, and a very good validation with the experimental data has been demonstrated. The model was then further utilised to investigate the effects of temperature, H2 partial pressure, H2/oil feed ratio and LHSV. The model predicted that maximum triglyceride conversion was attainable at reaction conditions of 300 °C temperature, 30 bar H2 partial pressure, H2/oil of 1000 cm3/cm3 feed ratio and 1.2 h−1 LHSV.

Suggested Citation

  • Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:582-596
    DOI: 10.1016/j.renene.2023.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fei & Xu, Hui & Yu, Songyin & Zhu, Hao & Du, Yuchan & Zhang, Zeng & You, Chaoqun & Jiang, Xiaoxiang & Jiang, Jianchun, 2022. "Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel," Renewable Energy, Elsevier, vol. 197(C), pages 40-49.
    2. Adedoyin, Festus Fatai & Alola, Andrew Adewale & Bekun, Festus Victor, 2021. "The alternative energy utilization and common regional trade outlook in EU-27: Evidence from common correlated effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    4. Wei Jin & Laura Pastor-Pérez & Juan J. Villora-Pico & Mercedes M. Pastor-Blas & Antonio Sepúlveda-Escribano & Sai Gu & Nikolaos D. Charisiou & Kyriakos Papageridis & Maria A. Goula & Tomas R. Reina, 2019. "Catalytic Conversion of Palm Oil to Bio-Hydrogenated Diesel over Novel N-Doped Activated Carbon Supported Pt Nanoparticles," Energies, MDPI, vol. 13(1), pages 1-15, December.
    5. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    6. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    7. Mantha Gousi & Eleana Kordouli & Kyriakos Bourikas & Emmanouil Symianakis & Spyros Ladas & Christos Kordulis & Alexis Lycourghiotis, 2020. "Green Diesel Production over Nickel-Alumina Nanostructured Catalysts Promoted by Copper," Energies, MDPI, vol. 13(14), pages 1-17, July.
    8. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    9. Papageridis, Kyriakos N. & Charisiou, Nikolaos D. & Douvartzides, Savvas & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & AlKhoori, Sara & Polychronopoulou, Kyriaki & Goula, Maria A., 2020. "Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil," Renewable Energy, Elsevier, vol. 162(C), pages 1793-1810.
    10. Wang, Fei & Pace, Robert & Ji, Yaying & Jiang, Jianchun & Jiang, Xiaoxiang & Krystianiak, Anna & Heintz, Olivier & Caboche, Gilles & Santillan-Jimenez, Eduardo & Crocker, Mark, 2022. "Effect of Pd promotion and catalyst support on the Ni-catalyzed deoxygenation of tristearin to fuel-like hydrocarbons," Renewable Energy, Elsevier, vol. 195(C), pages 1468-1479.
    11. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    12. Lycourghiotis, Sotiris & Kordouli, Eleana & Kordulis, Christos & Bourikas, Kyriakos, 2021. "Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite," Renewable Energy, Elsevier, vol. 180(C), pages 773-786.
    13. Arun, Naveenji & Sharma, Rajesh V. & Dalai, Ajay K., 2015. "Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 240-255.
    14. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Shahbaz, Muhammad & Aqsha, Aqsha, 2020. "Process optimization of green diesel selectivity and understanding of reaction intermediates," Renewable Energy, Elsevier, vol. 149(C), pages 1092-1106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    2. Papageridis, Kyriakos N. & Charisiou, Nikolaos D. & Douvartzides, Savvas & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & AlKhoori, Sara & Polychronopoulou, Kyriaki & Goula, Maria A., 2020. "Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil," Renewable Energy, Elsevier, vol. 162(C), pages 1793-1810.
    3. Barbosa, Ian V. & Scapim, Letícia A. & Cavalcante, Raquel M. & Young, André F., 2023. "Industrial production of green diesel in Brazil: Process simulation and economic perspectives," Renewable Energy, Elsevier, vol. 219(P2).
    4. George Petropoulos & John Zafeiropoulos & Eleana Kordouli & Alexis Lycourghiotis & Christos Kordulis & Kyriakos Bourikas, 2023. "Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO 2 Catalysts for Renewable Diesel Production," Energies, MDPI, vol. 16(11), pages 1-15, May.
    5. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    6. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Giuseppe Di Vito Nolfi & Katia Gallucci & Leucio Rossi, 2021. "Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    8. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    9. Lycourghiotis, Sotiris & Kordouli, Eleana & Kordulis, Christos & Bourikas, Kyriakos, 2021. "Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite," Renewable Energy, Elsevier, vol. 180(C), pages 773-786.
    10. Chen, Shuang & Zhou, Guilin & Miao, Caixia, 2019. "Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 568-589.
    11. Nishu, & Li, Chong & Yellezuome, Dominic & Li, Yingkai & Liu, Ronghou, 2023. "Catalytic pyrolysis of rice straw for high yield of aromatics over modified ZSM-5 catalysts and its kinetics," Renewable Energy, Elsevier, vol. 209(C), pages 569-580.
    12. Ali Abdulkhani & Zahra Echresh Zadeh & Solomon Gajere Bawa & Fubao Sun & Meysam Madadi & Xueming Zhang & Basudeb Saha, 2023. "Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass," Energies, MDPI, vol. 16(6), pages 1-19, March.
    13. Wu, Wei & Supankanok, Rasa & Chandra-Ambhorn, Walairat & Taipabu, Muhammad Ikhsan, 2023. "Novel CO2-negative design of palm oil-based polygeneration systems," Renewable Energy, Elsevier, vol. 203(C), pages 622-633.
    14. Why, Elaine Siew Kuan & Ong, Hwai Chyuan & Lee, Hwei Voon & Chen, Wei-Hsin & Asikin-Mijan, N. & Varman, Mahendra & Loh, Wen Jing, 2022. "Single-step catalytic deoxygenation of palm feedstocks for the production of sustainable bio-jet fuel," Energy, Elsevier, vol. 239(PB).
    15. Shir Reen Chia & Saifuddin Nomanbhay & Kit Wayne Chew & Pau Loke Show & Jassinnee Milano & Abd Halim Shamsuddin, 2022. "Indigenous Materials as Catalyst Supports for Renewable Diesel Production in Malaysia," Energies, MDPI, vol. 15(8), pages 1-31, April.
    16. Oppong, Francis & Zhongyang, Luo & Li, Xiaolu & Song, Yang & Xu, Cangsu & Diaby, Abdullatif Lacina, 2022. "Methyl pentanoate laminar burning characteristics: Experimental and numerical analysis," Renewable Energy, Elsevier, vol. 197(C), pages 228-236.
    17. Abul Kalam Azad & Abhijaysinh Chandrasinh Jadeja & Arun Teja Doppalapudi & Nur Md Sayeed Hassan & Md Nurun Nabi & Roshan Rauniyar, 2024. "Design and Simulation of the Biodiesel Process Plant for Sustainable Fuel Production," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    18. Mehmet Balcilar & Ojonugwa Usman & George N. Ike, 2023. "Investing green for sustainable development without ditching economic growth," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 728-743, April.
    19. Sakdasri, Winatta & Sawangkeaw, Ruengwit & Ngamprasertsith, Somkiat, 2018. "Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio," Energy, Elsevier, vol. 152(C), pages 144-153.
    20. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:582-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.