Review of propulsion systems on LNG carriers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2016.09.095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lin, Cherng-Yuan, 2013. "Strategies for promoting biodiesel use in marine vessels," Marine Policy, Elsevier, vol. 40(C), pages 84-90.
- Kakaee, Amir-Hasan & Paykani, Amin & Ghajar, Mostafa, 2014. "The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 64-78.
- Miana, Mario & Hoyo, Rafael del & Rodrigálvarez, Vega & Valdés, José Ramón & Llorens, Raúl, 2010. "Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation," Applied Energy, Elsevier, vol. 87(5), pages 1687-1700, May.
- Maxwell, Don & Zhu, Zhen, 2011. "Natural gas prices, LNG transport costs, and the dynamics of LNG imports," Energy Economics, Elsevier, vol. 33(2), pages 217-226, March.
- Cheenkachorn, Kraipat & Poompipatpong, Chedthawut & Ho, Choi Gyeung, 2013. "Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)," Energy, Elsevier, vol. 53(C), pages 52-57.
- Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Hyun Cho, Jae & Lim, Wonsub & Moon, Il, 2011. "Current status and future projections of LNG demand and supplies: A global prospective," Energy Policy, Elsevier, vol. 39(7), pages 4097-4104, July.
- Chang, Daejun & Rhee, Taejin & Nam, Kiil & Chang, Kwangpil & Lee, Donghun & Jeong, Samheon, 2008. "A study on availability and safety of new propulsion systems for LNG carriers," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1877-1885.
- Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & García-Martínez, M.J., 2010. "Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals," Applied Energy, Elsevier, vol. 87(11), pages 3384-3392, November.
- Soloiu, Valentin & Lewis, Jeffery & Yoshihara, Yoshinobu & Nishiwaki, Kazuie, 2011. "Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance," Energy, Elsevier, vol. 36(7), pages 4353-4371.
- Aguilera, Roberto F. & Aguilera, Roberto, 2012. "World natural gas endowment as a bridge towards zero carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 579-586.
- Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
- Shin, Younggy & Lee, Yoon Pyo, 2009. "Design of a boil-off natural gas reliquefaction control system for LNG carriers," Applied Energy, Elsevier, vol. 86(1), pages 37-44, January.
- Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
- Vanem, Erik & Antão, Pedro & Østvik, Ivan & de Comas, Francisco Del Castillo, 2008. "Analysing the risk of LNG carrier operations," Reliability Engineering and System Safety, Elsevier, vol. 93(9), pages 1328-1344.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
- Park, Hyunjun & Lee, Sanghuk & Jeong, Jinyeong & Chang, Daejun, 2018. "Design of the compressor-assisted LNG fuel gas supply system," Energy, Elsevier, vol. 158(C), pages 1017-1027.
- Kim, Donghoi & Hwang, Chulmin & Gundersen, Truls & Lim, Youngsub, 2019. "Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers," Energy, Elsevier, vol. 173(C), pages 1119-1129.
- Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
- Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Soon-Kyu Hwang & Byung-Gun Jung, 2021. "A Novel Control Strategy on Stable Operation of Fuel Gas Supply System and Re-Liquefaction System for LNG Carriers," Energies, MDPI, vol. 14(24), pages 1-22, December.
- Sharafian, Amir & Blomerus, Paul & Mérida, Walter, 2019. "Natural gas as a ship fuel: Assessment of greenhouse gas and air pollutant reduction potential," Energy Policy, Elsevier, vol. 131(C), pages 332-346.
- Yin, L. & Ju, Y.L., 2019. "Comparison and analysis of two nitrogen expansion cycles for BOG Re-liquefaction systems for small LNG ships," Energy, Elsevier, vol. 172(C), pages 769-776.
- Pospíšil, Jiří & Charvát, Pavel & Arsenyeva, Olga & Klimeš, Lubomír & Špiláček, Michal & Klemeš, Jiří Jaromír, 2019. "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 1-15.
- Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
- Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohd Shariq Khan & Muhammad Abdul Qyyum & Wahid Ali & Aref Wazwaz & Khursheed B. Ansari & Moonyong Lee, 2020. "Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank," Energies, MDPI, vol. 13(21), pages 1-14, October.
- Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
- Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
- Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
- Pan, Jie & Cao, Qinghan & Li, Mofan & Li, Ran & Tang, Linghong & Bai, Junhua, 2024. "Energy integration of light hydrocarbon separation, LNG cold energy power generation, and BOG combustion: Thermo-economic optimization and analysis," Applied Energy, Elsevier, vol. 356(C).
- Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Romero Gómez, Manuel & Romero Gómez, Javier & López-González, Luis M. & López-Ochoa, Luis M., 2016. "Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture," Energy, Elsevier, vol. 105(C), pages 32-44.
- Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
- Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
- Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
- Saleh Aseel & Hussein Al-Yafei & Murat Kucukvar & Nuri C. Onat, 2021. "Life Cycle Air Emissions and Social Human Health Impact Assessment of Liquified Natural Gas Maritime Transport," Energies, MDPI, vol. 14(19), pages 1-19, September.
- Hu, J.Y. & Chen, S. & Zhu, J. & Zhang, L.M. & Luo, E.C. & Dai, W. & Li, H.B., 2016. "An efficient pulse tube cryocooler for boil-off gas reliquefaction in liquid natural gas tanks," Applied Energy, Elsevier, vol. 164(C), pages 1012-1018.
- Ivan Smajla & Daria Karasalihović Sedlar & Branko Drljača & Lucija Jukić, 2019. "Fuel Switch to LNG in Heavy Truck Traffic," Energies, MDPI, vol. 12(3), pages 1-19, February.
- Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
- Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
- Wan, Chengpeng & Yan, Xinping & Zhang, Di & Yang, Zaili, 2019. "A novel policy making aid model for the development of LNG fuelled ships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 29-44.
- Chen, Zheng & Ai, Yaquan & Qin, Tao & Luo, Feng, 2019. "Quantitative evaluation of n-butane concentration on knock severity of a natural gas heavy-duty SI engine," Energy, Elsevier, vol. 189(C).
- Kang, Goanwoo & Im, Junyoung & Lee, Chul-Jin, 2024. "Operational strategy to minimize operating cost in LNG terminal using a comprehensive numerical boil-off gas model," Energy, Elsevier, vol. 296(C).
- Tang, Changlong & Hu, Fan & Zhou, Xiaoguang & Li, Yajun, 2022. "Optimization methods for flexibility and stability related to the operation of LNG receiving terminals," Energy, Elsevier, vol. 250(C).
More about this item
Keywords
2STwo-Stroke; 4SFour-Stroke; AFRAir/Fuel Ratio; BLRBoiler; BOGBoil-Off Gas; COGESCombined Gas turbine Electric & Steam system; DFDual Fuel; DFDEDual-Fuel (medium speed) Diesel Electric propulsion); DFDM(HP)Dual-Fuel (low speed) Diesel Mechanical propulsion (high pressure); DFDM (LP)Dual-Fuel (low speed) Diesel Mechanical propulsion (low pressure); DFGEDual-Fuel Gas turbine Electric propulsion; DFSMDual-Fuel Steam turbine Mechanical propulsion; DWIDirect Water Injection; GCUGas Combustion Unit; GTGas Turbines; HAMHumid Air Motor; HFOHeavy Fuel Oil; HPHigh Pressure; IPIntermediate Pressure; LDLow Duty; LPLow Pressure; LNGLiquefied Natural Gas; NGNatural Gas; BDCBottom Dead Centre; TDCTop Dead Centre; RHReheater; SCRSelective Catalytic Reduction; SFDM+RSingle-Fuel (low speed) Diesel Mechanical propulsion with Reliquefaction; STSteam Turbine; USTUltra Steam Turbine; Boil-off gas; Dual fuel; Efficiency; Liquefied natural gas; Engine; Turbine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:1395-1411. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.