IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v57y2013icp412-420.html
   My bibliography  Save this article

Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion

Author

Listed:
  • Burel, Fabio
  • Taccani, Rodolfo
  • Zuliani, Nicola

Abstract

Today, most merchant vessels use Heavy Fuel Oils (HFOs) for ship propulsion. These fuels are cost effective but they produce significant amounts of noxious emissions. In order to comply with International Maritime Organization (IMO) rules, Liquefied Natural Gas (LNG) is becoming an interesting option for merchant ships. The aim of the research presented in this paper is to analyse the economic upturn that can result from the use of LNG as fuel for merchant ships and to assess the effects of its utilization in terms of environmental impact.

Suggested Citation

  • Burel, Fabio & Taccani, Rodolfo & Zuliani, Nicola, 2013. "Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion," Energy, Elsevier, vol. 57(C), pages 412-420.
  • Handle: RePEc:eee:energy:v:57:y:2013:i:c:p:412-420
    DOI: 10.1016/j.energy.2013.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo, T.J. & Durango, J.A. & Navarro, E., 2010. "Exergy analysis of PEM fuel cells for marine applications," Energy, Elsevier, vol. 35(2), pages 1164-1171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    2. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    3. Salemme, Lucia & Menna, Laura & Simeone, Marino, 2013. "Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value," Energy, Elsevier, vol. 57(C), pages 368-374.
    4. S. M. Seyed Mahmoudi & Niloufar Sarabchi & Mortaza Yari & Marc A. Rosen, 2019. "Exergy and Exergoeconomic Analyses of a Combined Power Producing System including a Proton Exchange Membrane Fuel Cell and an Organic Rankine Cycle," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    5. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    6. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    7. Li, Dazi & Yu, Yadi & Jin, Qibing & Gao, Zhiqiang, 2014. "Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 68(C), pages 210-217.
    8. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    9. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Jessie R. Smith & Savvas Gkantonas & Epaminondas Mastorakos, 2022. "Modelling of Boil-Off and Sloshing Relevant to Future Liquid Hydrogen Carriers," Energies, MDPI, vol. 15(6), pages 1-32, March.
    11. Akgun, Ibrahim & Dincer, Ibrahim, 2024. "Development of a smart powering system with ammonia fuel cells and internal combustion engine for submarines," Energy, Elsevier, vol. 294(C).
    12. Ghosh, P.C. & Vasudeva, U., 2011. "Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(5), pages 3138-3147.
    13. Lee, Chi-Hung & Chen, Szu-Hsien & Wang, Yen-Zen & Lin, Chao-Chien & Huang, Chih-Kai & Chuang, Ching-Nan & Wang, Chih-Kuang & Hsieh, Kuo-Huang, 2013. "Preparation and characterization of proton exchange membranes based on semi-interpenetrating sulfonated poly(imide-siloxane)/epoxy polymer networks," Energy, Elsevier, vol. 55(C), pages 905-915.
    14. Bilgili, Levent, 2021. "Comparative assessment of alternative marine fuels in life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    16. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    17. Iranzo, Alfredo & Navas, Sergio J. & Rosa, Felipe & Berber, Mohamed R., 2021. "Determination of time constants of diffusion and electrochemical processes in Polymer Electrolyte Membrane Fuel Cells," Energy, Elsevier, vol. 221(C).
    18. Wang, Shengnan & Li, Yunhua & Li, Yun-Ze & Peng, Xing & Mao, Yufeng, 2018. "Exergy based parametric analysis of a cooling and power co-generation system for the life support system of extravehicular spacesuits," Renewable Energy, Elsevier, vol. 115(C), pages 1209-1219.
    19. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    20. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:412-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.