IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp1017-1027.html
   My bibliography  Save this article

Design of the compressor-assisted LNG fuel gas supply system

Author

Listed:
  • Park, Hyunjun
  • Lee, Sanghuk
  • Jeong, Jinyeong
  • Chang, Daejun

Abstract

This paper proposes an LNG fuel gas supply system in which the compressors are used for multiple purposes. Referred to as the compressor-assisted fuel gas supply system (CA-FGSS), the proposed system uses its compressors to both manage the boil-off gas (BOG) in the LNG fuel tank and generate a pressure differential for drawing LNG from the tank. The feasibility of the defined operation sequence of the CA-FGSS was verified by dynamic process simulations in which the system was applied to two-stroke dual-fuel engines that required medium and high fuel gas injection pressures (16 and 300 bar), respectively. An availability analysis revealed 99% system availability of the CA-FGSS, which has a lower number of redundant equipment compared to a conventional pump-based fuel gas supply system (PB-FGSS). This is because the CA-FGSS does not use components with high failure rates and long maintenance times, such as in-tank pumps in the LNG fuel tank. These findings demonstrate the economic feasibility of the CA-FGSS, which also has a 10% lower capital expenditure compared to a PB-FGSS. A sensitivity analysis of the entire propulsion system of the CA-FGSS further showed that it was operationally more economical than a PB-FGSS for the same gas supply pressure. Moreover, a high-pressure propulsion system that utilizes the CA-FGSS was found to be more economical than a medium-pressure propulsion system for a high LNG price.

Suggested Citation

  • Park, Hyunjun & Lee, Sanghuk & Jeong, Jinyeong & Chang, Daejun, 2018. "Design of the compressor-assisted LNG fuel gas supply system," Energy, Elsevier, vol. 158(C), pages 1017-1027.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:1017-1027
    DOI: 10.1016/j.energy.2018.06.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    2. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    3. Seo, Suwon & Han, Sangheon & Lee, Sangick & Chang, Daejun, 2016. "A pump-free boosting system and its application to liquefied natural gas supply for large ships," Energy, Elsevier, vol. 105(C), pages 70-79.
    4. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soon-Kyu Hwang & Byung-Gun Jung, 2021. "A Novel Control Strategy on Stable Operation of Fuel Gas Supply System and Re-Liquefaction System for LNG Carriers," Energies, MDPI, vol. 14(24), pages 1-22, December.
    2. Wang, Cheng & Ju, Yonglin & Fu, Yunzhun, 2021. "Comparative life cycle cost analysis of low pressure fuel gas supply systems for LNG fueled ships," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Soon-Kyu Hwang & Byung-Gun Jung, 2021. "A Novel Control Strategy on Stable Operation of Fuel Gas Supply System and Re-Liquefaction System for LNG Carriers," Energies, MDPI, vol. 14(24), pages 1-22, December.
    3. Jamin Koo & Soung-Ryong Oh & Yeo-Ul Choi & Jae-Hoon Jung & Kyungtae Park, 2019. "Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship," Energies, MDPI, vol. 12(10), pages 1-17, May.
    4. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
    7. Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
    8. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    9. Davor Dujak, 2017. "Mapping Of Natural Gas Supply Chains: Literature Review," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 17, pages 293-309.
    10. Rasoulinezhad, Ehsan & Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki & Sarker, Tapan, 2019. "Russian Federation–East Asia Liquefied Natural Gas Trade Patterns and Regional Energy Security," ADBI Working Papers 965, Asian Development Bank Institute.
    11. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    12. Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
    13. Kian-Guan Lim & Michelle Lim, 2020. "Financial performance of shipping firms that increase LNG carriers and the support of eco-innovation," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-25, December.
    14. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    15. Ilnytskyy Denys & Zinchenko Sergii & Savych Oleksandr & Yanchetskyy Oleksandr, 2018. "Analysis of seaports development strategies: science, technology, education and marketing," Technology audit and production reserves, 3(41) 2018, Socionet;Technology audit and production reserves, vol. 3(4(41)), pages 10-24.
    16. Grusche J. Seithe & Alexandra Bonou & Dimitrios Giannopoulos & Chariklia A. Georgopoulou & Maria Founti, 2020. "Maritime Transport in a Life Cycle Perspective: How Fuels, Vessel Types, and Operational Profiles Influence Energy Demand and Greenhouse Gas Emissions," Energies, MDPI, vol. 13(11), pages 1-20, May.
    17. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).
    18. Tayfun Uyanık & Yunus Yalman & Özcan Kalenderli & Yasin Arslanoğlu & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Data-Driven Approach for Estimating Power and Fuel Consumption of Ship: A Case of Container Vessel," Mathematics, MDPI, vol. 10(22), pages 1-21, November.
    19. Halff, Antoine & Younes, Lara & Boersma, Tim, 2019. "The likely implications of the new IMO standards on the shipping industry," Energy Policy, Elsevier, vol. 126(C), pages 277-286.
    20. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:1017-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.