IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics0360544222006818.html
   My bibliography  Save this article

Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission

Author

Listed:
  • Pham, Quangkhai
  • Park, Sungwook
  • Agarwal, Avinash Kumar
  • Park, Suhan

Abstract

Increasing global demand for transport energy and concerns regarding diesel engine emissions have motivated alternative fuels for the internal combustion (IC) engine. Numerous researchers have investigated alternative fuels in the diesel engines’ dual-fuel mode to improve the emission profiles and energy consumption for transportation and distribution activities. In this review, the engine performance, combustion, and emission characteristics of alternative fuels (hydrogen, natural gas, biodiesel) in dual-fuel mode in compression ignition (CI) engines are thoroughly analyzed. Due to different fuel properties in a dual-fuel mode, the size distribution of spray droplets, and consequent mixing with ambient air, generally improve the brake specific energy consumption (BSEC) compared to the baseline diesel mode. However, the performance of the dual-fuel engine based on brake thermal efficiency (BTE) and volumetric efficiency remains significantly lower. The dual-fuel combustion mode in an engine significantly increases the in-cylinder pressure and the heat release rate and extends the ignition delay. The emission characteristics indicated a trade-off between nitrogen oxides and hydrocarbon emissions, and reduced nitrogen oxides, particulate matter, and smoke were influenced by engine load, blend ratio, and injection timing. However, the dual-fuel engine shows a significant increase in hydrocarbons (HC) and carbon monoxide (CO) emissions (up to several times) compared to a normal diesel engine.

Suggested Citation

  • Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006818
    DOI: 10.1016/j.energy.2022.123778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kakaee, Amir-Hasan & Paykani, Amin & Ghajar, Mostafa, 2014. "The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 64-78.
    2. Ryu, Kyunghyun, 2013. "Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel," Applied Energy, Elsevier, vol. 111(C), pages 721-730.
    3. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    4. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    5. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2020. "Effect of injection timing on modified direct injection diesel engine performance operated with dairy scum biodiesel and Bio-CNG," Renewable Energy, Elsevier, vol. 147(P1), pages 1019-1032.
    6. Yulin Chen & Songtao Liu & Xiaoyu Guo & Chaojie Jia & Xiaodong Huang & Yaodong Wang & Haozhong Huang, 2021. "Experimental Research on the Macroscopic and Microscopic Spray Characteristics of Diesel-PODE 3-4 Blends," Energies, MDPI, vol. 14(17), pages 1-24, September.
    7. Wang, Bin & Yao, Anren & Yao, Chunde & Chen, Chao & Wang, Hui, 2020. "In-depth comparison between pure diesel and diesel methanol dual fuel combustion mode," Applied Energy, Elsevier, vol. 278(C).
    8. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether," Applied Energy, Elsevier, vol. 113(C), pages 488-499.
    9. Liu, Jie & Yang, Fuyuan & Wang, Hewu & Ouyang, Minggao & Hao, Shougang, 2013. "Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing," Applied Energy, Elsevier, vol. 110(C), pages 201-206.
    10. Cheenkachorn, Kraipat & Poompipatpong, Chedthawut & Ho, Choi Gyeung, 2013. "Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas)," Energy, Elsevier, vol. 53(C), pages 52-57.
    11. M. I. Lamas & C. G. Rodriguez, 2019. "NOx Reduction in Diesel-Hydrogen Engines Using Different Strategies of Ammonia Injection," Energies, MDPI, vol. 12(7), pages 1-13, April.
    12. Tira, H.S. & Herreros, J.M. & Tsolakis, A. & Wyszynski, M.L., 2012. "Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels," Energy, Elsevier, vol. 47(1), pages 620-629.
    13. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    14. Poorghasemi, Kamran & Saray, Rahim Khoshbakhti & Ansari, Ehsan & Irdmousa, Behrouz Khoshbakht & Shahbakhti, Mehdi & Naber, Jeffery D., 2017. "Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine," Applied Energy, Elsevier, vol. 199(C), pages 430-446.
    15. Saravanan, N. & Nagarajan, G. & Narayanasamy, S., 2008. "An experimental investigation on DI diesel engine with hydrogen fuel," Renewable Energy, Elsevier, vol. 33(3), pages 415-421.
    16. Park, Su Han & Yoon, Seung Hyun & Cha, Junepyo & Lee, Chang Sik, 2014. "Mixing effects of biogas and dimethyl ether (DME) on combustion and emission characteristics of DME fueled high-speed diesel engine," Energy, Elsevier, vol. 66(C), pages 413-422.
    17. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    18. Alexandru Cernat & Constantin Pana & Niculae Negurescu & Gheorghe Lazaroiu & Cristian Nutu & Dinu Fuiorescu, 2020. "Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    19. Seamus P. Kane & William F. Northrop, 2021. "Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine," Energies, MDPI, vol. 14(22), pages 1-21, November.
    20. Balamurugan, T. & Nalini, R., 2014. "Experimental investigation on performance, combustion and emission characteristics of four stroke diesel engine using diesel blended with alcohol as fuel," Energy, Elsevier, vol. 78(C), pages 356-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    2. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    3. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    4. Lv, Chengkun & Xu, Haiqi & Chang, Juntao & Wang, Youyin & Chen, Ruoyu & Yu, Daren, 2022. "Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor," Energy, Elsevier, vol. 261(PB).
    5. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    6. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    7. Maria Cristina Cameretti & Roberta De Robbio & Ezio Mancaruso & Marco Palomba, 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen," Energies, MDPI, vol. 15(15), pages 1-21, July.
    8. Deng, Xiaorong & Li, Jing & Liang, Yifei & Yang, Wenming, 2023. "Dual-fuel engines fueled with n-butanol/n-octanol and n-butanol/DNBE: A comparative study of combustion and emissions characteristics," Energy, Elsevier, vol. 263(PC).
    9. Alruqi, Mansoor & Sharma, Prabhakar & Ağbulut, Ümit, 2023. "Investigations on biomass gasification derived producer gas and algal biodiesel to power a dual-fuel engines: Application of neural networks optimized with Bayesian approach and K-cross fold," Energy, Elsevier, vol. 282(C).
    10. Park, Hyunwook & Shim, Euijoon & Lee, Junsun & Oh, Seungmook & Kim, Changup & Lee, Yonggyu & Kang, Kernyong, 2023. "Comparative evaluation of conventional dual fuel, early pilot, and reactivity-controlled compression ignition modes in a natural gas-diesel dual-fuel engine," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    2. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    4. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    5. Geng, Peng & Cao, Erming & Tan, Qinming & Wei, Lijiang, 2017. "Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 523-534.
    6. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2021. "Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel," Energy, Elsevier, vol. 221(C).
    7. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Larmi, Martti, 2021. "Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine," Applied Energy, Elsevier, vol. 282(PA).
    8. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Cho, Jungkeun & Park, Sangjun & Song, Soonho, 2019. "The effects of the air-fuel ratio on a stationary diesel engine under dual-fuel conditions and multi-objective optimization," Energy, Elsevier, vol. 187(C).
    10. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    11. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    12. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    13. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid & Liko, Brian, 2019. "On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection," Applied Energy, Elsevier, vol. 242(C), pages 216-231.
    14. Ahmadi, Rouhollah & Hosseini, S. Mohammad, 2018. "Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine," Applied Energy, Elsevier, vol. 213(C), pages 450-468.
    15. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).
    16. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    17. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    19. Wu, Horng-Wen & Fan, Chen-Ming & He, Jian-Yi & Hsu, Tzu-Ting, 2017. "Optimal factors estimation for diesel/methanol engines changing methanol injection timing and inlet air temperature," Energy, Elsevier, vol. 141(C), pages 1819-1828.
    20. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2018. "Effect of hydrogen fuel flow rate, fuel injection timing and exhaust gas recirculation on the performance of dual fuel engine powered with renewable fuels," Renewable Energy, Elsevier, vol. 126(C), pages 79-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.