IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5578-d434656.html
   My bibliography  Save this article

Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank

Author

Listed:
  • Mohd Shariq Khan

    (Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
    These authors contributed equally.)

  • Muhammad Abdul Qyyum

    (Department of Chemical Engineering, Yeungnam University, Dae-dong 712-749, Korea
    These authors contributed equally.)

  • Wahid Ali

    (Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan 45142, Saudi Arabia)

  • Aref Wazwaz

    (Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman)

  • Khursheed B. Ansari

    (Department of Chemical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202001, India)

  • Moonyong Lee

    (Department of Chemical Engineering, Yeungnam University, Dae-dong 712-749, Korea)

Abstract

Boil-off gas (BOG) from a liquefied natural gas (LNG) storage tank depends on the amount of heat leakage however, its assessment often relies on the static value of the boil-off rate (BOR) suggested by the LNG tank vendors that over/under predicts BOG generation. Thus, the impact of static BOR on BOG predictions is investigated and the results suggest that BOR is a strong function of liquid level in a tank. Total heat leakage in a tank practically remains constant, nonetheless the unequal distribution of heat in vapor and liquid gives variation in BOR. Assigning the total tank heat leak to the liquid is inappropriate since a part of heat increases vapor temperature. At the lower liquid level, BOG is under-predicted and at a higher level, it is over-predicted using static BOR. Simulation results show that BOR varies from 0.012 wt% per day for an 80% tank fill to 0.12 wt% per day at 10% tank fill.

Suggested Citation

  • Mohd Shariq Khan & Muhammad Abdul Qyyum & Wahid Ali & Aref Wazwaz & Khursheed B. Ansari & Moonyong Lee, 2020. "Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank," Energies, MDPI, vol. 13(21), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5578-:d:434656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Migliore, Calogero & Salehi, Amin & Vesovic, Velisa, 2017. "A non-equilibrium approach to modelling the weathering of stored Liquefied Natural Gas (LNG)," Energy, Elsevier, vol. 124(C), pages 684-692.
    2. Miana, Mario & Hoyo, Rafael del & Rodrigálvarez, Vega & Valdés, José Ramón & Llorens, Raúl, 2010. "Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation," Applied Energy, Elsevier, vol. 87(5), pages 1687-1700, May.
    3. Kurle, Yogesh M. & Wang, Sujing & Xu, Qiang, 2015. "Simulation study on boil-off gas minimization and recovery strategies at LNG exporting terminals," Applied Energy, Elsevier, vol. 156(C), pages 628-641.
    4. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & García-Martínez, M.J., 2010. "Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals," Applied Energy, Elsevier, vol. 87(11), pages 3384-3392, November.
    5. Khan, Mohd Shariq & Lee, Sanggyu & Rangaiah, G.P. & Lee, Moonyong, 2013. "Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes," Applied Energy, Elsevier, vol. 111(C), pages 1018-1031.
    6. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    7. Shin, Younggy & Lee, Yoon Pyo, 2009. "Design of a boil-off natural gas reliquefaction control system for LNG carriers," Applied Energy, Elsevier, vol. 86(1), pages 37-44, January.
    8. Lee, Inkyu & Park, Jinwoo & Moon, Il, 2017. "Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration," Energy, Elsevier, vol. 140(P1), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun-Seung Kim & Churl-Hee Cho, 2022. "An Economical Boil-Off Gas Management System for LNG Refueling Stations: Evaluation Using Scenario Analysis," Energies, MDPI, vol. 15(22), pages 1-14, November.
    2. Kang, Goanwoo & Im, Junyoung & Lee, Chul-Jin, 2024. "Operational strategy to minimize operating cost in LNG terminal using a comprehensive numerical boil-off gas model," Energy, Elsevier, vol. 296(C).
    3. Syauqi, Ahmad & Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2024. "Design and optimization of an onboard boil-off gas re-liquefaction process under different weather-related scenarios with machine learning predictions," Energy, Elsevier, vol. 293(C).
    4. Golrokh Sani, Ahmad & Najafi, Hamidreza & Azimi, Seyedeh Shakiba, 2022. "Dynamic thermal modeling of the refrigerated liquified CO2 tanker in carbon capture, utilization, and storage chain: A truck transport case study," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
    2. Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
    3. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    4. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    5. Rehman, Ali & Qyyum, Muhammad Abdul & Qadeer, Kinza & Zakir, Fatima & Ding, Yulong & Lee, Moonyong & Wang, Li, 2020. "Integrated biomethane liquefaction using exergy from the discharging end of a liquid air energy storage system," Applied Energy, Elsevier, vol. 260(C).
    6. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    7. Perez, Fernando & Al Ghafri, Saif Z.S. & Gallagher, Liam & Siahvashi, Arman & Ryu, Yonghee & Kim, Sungwoo & Kim, Sung Gyu & Johns, Michael L. & May, Eric F., 2021. "Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas," Energy, Elsevier, vol. 222(C).
    8. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    10. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    11. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    12. Bian, Jiang & Yang, Jian & Liu, Yang & Li, Yuxing & Cao, Xuewen, 2022. "Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers," Energy, Elsevier, vol. 239(PB).
    13. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    14. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    15. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    16. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    17. Thiaucourt, Jonas & Marty, Pierre & Hetet, Jean-François, 2020. "Impact of natural gas quality on engine performances during a voyage using a thermodynamic fuel system model," Energy, Elsevier, vol. 197(C).
    18. Tang, Changlong & Hu, Fan & Zhou, Xiaoguang & Li, Yajun, 2022. "Optimization methods for flexibility and stability related to the operation of LNG receiving terminals," Energy, Elsevier, vol. 250(C).
    19. Lukasz Szablowski & Piotr Krawczyk & Marcin Wolowicz, 2021. "Exergy Analysis of Adiabatic Liquid Air Energy Storage (A-LAES) System Based on Linde–Hampson Cycle," Energies, MDPI, vol. 14(4), pages 1-16, February.
    20. Jung, Byungchan & Park, Kiheum & Sohn, Younghoon & Oh, Juyoung & Lee, Joon Chae & Jung, Hae Won & Seo, Yutaek & Lim, Youngsub, 2022. "Prediction model of LNG weathering using net mass and heat transfer," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5578-:d:434656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.