IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v105y2016icp32-44.html
   My bibliography  Save this article

Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture

Author

Listed:
  • Romero Gómez, Manuel
  • Romero Gómez, Javier
  • López-González, Luis M.
  • López-Ochoa, Luis M.

Abstract

The LNG (liquefied natural gas) regasification process is a source of cold exergy that is suitable to be recovered to improve the efficiency of thermal power plants. In this paper, an innovative power plant with LNG (liquefied natural gas) exergy utilisation and the capture of CO2 proceeding from the flue gases is presented. It is characterised by the recovery of LNG cold exergy in a closed Brayton cycle and through direct expansion in an expander coupled to an electrical generator. Moreover, this novel power plant configuration allows CO2 capture, through an oxy-fuel combustion system and a Rankine cycle that operates with the flue gases themselves and in quasi-critical conditions. The greatest advantage of this plant is that all the recoverable LNG exergy is used to increase the efficiency of the CBC (closed Brayton cycle) and in direct expansion whereas, in other power cycles found in literature that associate LNG regasification and CO2 capture, part of the LNG exergy is used for condensing flue gas CO2 for its subsequent capture. As a result, a high efficiency power plant is achieved, exceeding 65%, with almost zero greenhouse gas emissions.

Suggested Citation

  • Romero Gómez, Manuel & Romero Gómez, Javier & López-González, Luis M. & López-Ochoa, Luis M., 2016. "Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture," Energy, Elsevier, vol. 105(C), pages 32-44.
  • Handle: RePEc:eee:energy:v:105:y:2016:i:c:p:32-44
    DOI: 10.1016/j.energy.2015.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215012037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, G. & Morosuk, T., 2010. "Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas," Energy, Elsevier, vol. 35(2), pages 820-829.
    2. Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
    3. Lee, Ung & Kim, Kyeongsu & Han, Chonghun, 2014. "Design and optimization of multi-component organic rankine cycle using liquefied natural gas cryogenic exergy," Energy, Elsevier, vol. 77(C), pages 520-532.
    4. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    5. Aguilera, Roberto F. & Aguilera, Roberto, 2012. "World natural gas endowment as a bridge towards zero carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 579-586.
    6. Dong, Hui & Zhao, Liang & Zhang, Songyuan & Wang, Aihua & Cai, Jiuju, 2013. "Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle," Energy, Elsevier, vol. 63(C), pages 10-18.
    7. Deng, Shimin & Jin, Hongguang & Cai, Ruixian & Lin, Rumou, 2004. "Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization," Energy, Elsevier, vol. 29(4), pages 497-512.
    8. Liu, Yanni & Guo, Kaihua, 2011. "A novel cryogenic power cycle for LNG cold energy recovery," Energy, Elsevier, vol. 36(5), pages 2828-2833.
    9. Sun, Heng & Zhu, Hongmei & Liu, Feng & Ding, He, 2014. "Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid," Energy, Elsevier, vol. 70(C), pages 317-324.
    10. Romero Gómez, M. & Ferreiro Garcia, R. & Romero Gómez, J. & Carbia Carril, J., 2014. "Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 781-795.
    11. Zhang, Na & Lior, Noam & Liu, Meng & Han, Wei, 2010. "COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization," Energy, Elsevier, vol. 35(2), pages 1200-1210.
    12. Kuramochi, Takeshi & Ramírez, Andrea & Turkenburg, Wim & Faaij, André, 2013. "Techno-economic prospects for CO2 capture from distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 328-347.
    13. Gómez, Manuel Romero & Garcia, Ramón Ferreiro & Gómez, Javier Romero & Carril, José Carbia, 2014. "Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)," Energy, Elsevier, vol. 66(C), pages 927-937.
    14. Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.
    15. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Hyun Cho, Jae & Lim, Wonsub & Moon, Il, 2011. "Current status and future projections of LNG demand and supplies: A global prospective," Energy Policy, Elsevier, vol. 39(7), pages 4097-4104, July.
    16. Xia, Guanghui & Sun, Qingxuan & Cao, Xu & Wang, Jiangfeng & Yu, Yizhao & Wang, Laisheng, 2014. "Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied n," Energy, Elsevier, vol. 66(C), pages 643-653.
    17. Kvamsdal, Hanne M. & Jordal, Kristin & Bolland, Olav, 2007. "A quantitative comparison of gas turbine cycles with CO2 capture," Energy, Elsevier, vol. 32(1), pages 10-24.
    18. Zhang, Na & Lior, Noam, 2006. "A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization," Energy, Elsevier, vol. 31(10), pages 1666-1679.
    19. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & García-Martínez, M.J., 2010. "Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals," Applied Energy, Elsevier, vol. 87(11), pages 3384-3392, November.
    20. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).
    2. Xin, Yue & Zhang, Yindi & Xue, Peng & Wang, Ke & Adu, Emmanuel & Tontiwachwuthikul, Paitoon, 2021. "The optimization and thermodynamic and economic estimation analysis for CO2 compression-liquefaction process of CCUS system using LNG cold energy," Energy, Elsevier, vol. 236(C).
    3. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization," Energy, Elsevier, vol. 129(C), pages 171-184.
    4. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    5. Iglesias Garcia, Steven & Ferreiro Garcia, Ramon & Carbia Carril, Jose & Iglesias Garcia, Denis, 2018. "A review of thermodynamic cycles used in low temperature recovery systems over the last two years," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 760-767.
    6. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Pattanayak, Lalatendu & Padhi, Biranchi Narayana, 2018. "Thermodynamic analysis of combined cycle power plant using regasification cold energy from LNG terminal," Energy, Elsevier, vol. 164(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    2. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    3. Zhao, Liang & Dong, Hui & Tang, Jiajun & Cai, Jiuju, 2016. "Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 105(C), pages 45-56.
    4. Romero Gómez, M. & Ferreiro Garcia, R. & Romero Gómez, J. & Carbia Carril, J., 2014. "Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 781-795.
    5. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    6. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
    7. Wang, Xiu & Zhao, Liang & Zhang, Lihui & Zhang, Menghui & Dong, Hui, 2019. "A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 187(C).
    8. Fahmy, M.F.M. & Nabih, H.I. & El-Rasoul, T.A., 2015. "Optimization and comparative analysis of LNG regasification processes," Energy, Elsevier, vol. 91(C), pages 371-385.
    9. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    10. Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.
    11. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    12. Badami, Marco & Bruno, Juan Carlos & Coronas, Alberto & Fambri, Gabriele, 2018. "Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification," Energy, Elsevier, vol. 159(C), pages 373-384.
    13. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization," Applied Energy, Elsevier, vol. 204(C), pages 1148-1162.
    14. Sun, Heng & Zhu, Hongmei & Liu, Feng & Ding, He, 2014. "Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid," Energy, Elsevier, vol. 70(C), pages 317-324.
    15. Khan, Mohd Shariq & I.A. Karimi, & Bahadori, Alireza & Lee, Moonyong, 2015. "Sequential coordinate random search for optimal operation of LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 89(C), pages 757-767.
    16. García, Ramón Ferreiro & Carril, Jose Carbia & Gomez, Javier Romero & Gomez, Manuel Romero, 2016. "Combined cascaded Rankine and direct expander based power units using LNG (liquefied natural gas) cold as heat sink in LNG regasification," Energy, Elsevier, vol. 105(C), pages 16-24.
    17. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2016. "Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy," Energy, Elsevier, vol. 95(C), pages 324-345.
    18. Kim, Kyeongsu & Lee, Ung & Kim, Changsoo & Han, Chonghun, 2015. "Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid," Energy, Elsevier, vol. 88(C), pages 304-313.
    19. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization," Energy, Elsevier, vol. 129(C), pages 171-184.
    20. Domingues, António & Matos, Henrique A. & Pereira, Pedro M., 2022. "Novel integrated system of LNG regasification / electricity generation based on a cascaded two-stage Rankine cycle, with ternary mixtures as working fluids and seawater as hot utility," Energy, Elsevier, vol. 238(PC).

    More about this item

    Keywords

    CO2 capture; Efficiency; Exergy; LNG (liquefied natural gas);
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:105:y:2016:i:c:p:32-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.