Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2018.09.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Mafi, Mostafa, 2018. "Applying an integrated trigeneration incorporating hybrid energy systems for natural gas liquefaction," Energy, Elsevier, vol. 149(C), pages 848-864.
- Gilbert, Alexander Q. & Sovacool, Benjamin K., 2017. "US liquefied natural gas (LNG) exports: Boom or bust for the global climate?," Energy, Elsevier, vol. 141(C), pages 1671-1680.
- García, Ramón Ferreiro & Carril, Jose Carbia & Gomez, Javier Romero & Gomez, Manuel Romero, 2016. "Combined cascaded Rankine and direct expander based power units using LNG (liquefied natural gas) cold as heat sink in LNG regasification," Energy, Elsevier, vol. 105(C), pages 16-24.
- Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
- Zhao, Liang & Dong, Hui & Tang, Jiajun & Cai, Jiuju, 2016. "Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 105(C), pages 45-56.
- Yoo, Byeong-Yong, 2017. "The development and comparison of CO2 BOG re-liquefaction processes for LNG fueled CO2 carriers," Energy, Elsevier, vol. 127(C), pages 186-197.
- Sun, Heng & Zhu, Hongmei & Liu, Feng & Ding, He, 2014. "Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid," Energy, Elsevier, vol. 70(C), pages 317-324.
- Khan, Mohd Shariq & Lee, Moonyong, 2013. "Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints," Energy, Elsevier, vol. 49(C), pages 146-155.
- Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
- Koku, Oludolapo & Perry, Simon & Kim, Jin-Kuk, 2014. "Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing," Applied Energy, Elsevier, vol. 114(C), pages 250-261.
- Lee, Ung & Kim, Kyeongsu & Han, Chonghun, 2014. "Design and optimization of multi-component organic rankine cycle using liquefied natural gas cryogenic exergy," Energy, Elsevier, vol. 77(C), pages 520-532.
- Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
- Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
- Paltrinieri, Nicola & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Hazard identification for innovative LNG regasification technologies," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 18-28.
- Qyyum, Muhammad Abdul & Ali, Wahid & Long, Nguyen Van Duc & Khan, Mohd Shariq & Lee, Moonyong, 2018. "Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine," Energy, Elsevier, vol. 144(C), pages 968-976.
- Shin, Younggy & Lee, Yoon Pyo, 2009. "Design of a boil-off natural gas reliquefaction control system for LNG carriers," Applied Energy, Elsevier, vol. 86(1), pages 37-44, January.
- Invernizzi, Costante M. & Iora, Paolo, 2016. "The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview," Energy, Elsevier, vol. 105(C), pages 2-15.
- Randeep Agarwal & Thomas J. Rainey & S. M. Ashrafur Rahman & Ted Steinberg & Robert K. Perrons & Richard J. Brown, 2017. "LNG Regasification Terminals: The Role of Geography and Meteorology on Technology Choices," Energies, MDPI, vol. 10(12), pages 1-19, December.
- Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
- Miyazaki, T & Kang, Y.T & Akisawa, A & Kashiwagi, T, 2000. "A combined power cycle using refuse incineration and LNG cold energy," Energy, Elsevier, vol. 25(7), pages 639-655.
- Lee, Inkyu & Park, Jinwoo & Moon, Il, 2017. "Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration," Energy, Elsevier, vol. 140(P1), pages 106-115.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
- Devine, Mel T. & Russo, Marianna, 2019.
"Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets,"
Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
- Russo, Marianna & Devine, Mel T., 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Papers RB201908, Economic and Social Research Institute (ESRI).
- Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
- Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
- Jinxi, Wang & Xue, Bai & Ying, Liang & Aimin, Wang & Cuiying, Lu & Yajun, Ma & Chengmeng, Chen & Heydarian, Dariush, 2023. "Simulation and technical, economic, and environmental analyses of natural gas liquefaction cycle using different configurations," Energy, Elsevier, vol. 278(C).
- Lee, Sunghoon & Kim, Jin-Kuk, 2020. "Process-integrated design of a sub-ambient membrane process for CO2 removal from natural gas power plants," Applied Energy, Elsevier, vol. 260(C).
- Fonder, Michaël & Counotte, Pierre & Dachet, Victor & de Séjournet, Jehan & Ernst, Damien, 2024. "Synthetic methane for closing the carbon loop: Comparative study of three carbon sources for remote carbon-neutral fuel synthetization," Applied Energy, Elsevier, vol. 358(C).
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Haider, Junaid & Saeed, Saad & Qyyum, Muhammad Abdul & Kazmi, Bilal & Ahmad, Rizwan & Muhammad, Ayyaz & Lee, Moonyong, 2020. "Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
- Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2021. "Techno-economic and life cycle greenhouse gas emissions assessment of liquefied natural gas supply chain in China," Energy, Elsevier, vol. 224(C).
- Saadat Ullah Khan Suri & Muhammad Khaliq Majeed & Muhammad Shakeel Ahmad, 2023. "Simulation Analysis of Novel Integrated LNG Regasification-Organic Rankine Cycle and Anti-Sublimation Process to Generate Clean Energy," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Zheng, Siyang & Li, Chenghao & Zeng, Zhiyong, 2022. "Thermo-economic analysis, working fluids selection, and cost projection of a precooler-integrated dual-stage combined cycle (PIDSCC) system utilizing cold exergy of liquefied natural gas," Energy, Elsevier, vol. 238(PC).
- Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Yadav, Sandeep & Seethamraju, Srinivas & Banerjee, Rangan, 2023. "Cold energy recovery from liquefied natural gas regasification process for data centre cooling and power generation," Energy, Elsevier, vol. 283(C).
- Seungyeop Baek & Wontak Choi & Gyuchang Kim & Jaedeok Seo & Sanggon Lee & Hyomin Jeong & Yonmo Sung, 2022. "Liquefied Natural Gas Cold Energy Utilization for Land-Based Cold Water Fish Aquaculture in South Korea," Energies, MDPI, vol. 15(19), pages 1-13, October.
- Sadaghiani, Mirhadi S. & Siahvashi, Arman & Norris, Bruce W.E. & Al Ghafri, Saif Z.S. & Arami-Niya, Arash & May, Eric F., 2022. "Prediction of solid formation conditions in mixed refrigerants with iso-pentane and methane at high pressures and cryogenic temperatures," Energy, Elsevier, vol. 250(C).
- Manuel Naveiro & Manuel Romero Gómez & Ignacio Arias-Fernández & Álvaro Baaliña Insua, 2022. "Thermodynamic and Economic Analyses of Zero-Emission Open Loop Offshore Regasification Systems Integrating ORC with Zeotropic Mixtures and LNG Open Power Cycle," Energies, MDPI, vol. 15(22), pages 1-24, November.
- Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Kang, Dong Woo & Lee, Wonhyeong & Ahn, Yun-Ho & Kim, Kwangbum & Lee, Jae W., 2024. "Facile and sustainable methane storage via clathrate hydrate formation with low dosage promoters in a sponge matrix," Energy, Elsevier, vol. 292(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
- He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
- Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Nakayama, Masayuki & Coronas, Alberto, 2019. "Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 176(C), pages 1020-1036.
- Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
- Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
- Wang, Xiu & Zhao, Liang & Zhang, Lihui & Zhang, Menghui & Dong, Hui, 2019. "A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 187(C).
- Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
- Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
- Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
- Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
- He, Tianbiao & Nair, Sajitha K. & Babu, Ponnivalavan & Linga, Praveen & Karimi, Iftekhar A., 2018. "A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy," Applied Energy, Elsevier, vol. 222(C), pages 13-24.
- Han, Hui & Wang, Zihua & Wang, Cheng & Deng, Gonglin & Song, Chao & Jiang, Jie & Wang, Shaowei, 2019. "The study of a novel two-stage combined rankine cycle utilizing cold energy of liquefied natural gas," Energy, Elsevier, vol. 189(C).
- Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
- Romero Gómez, M. & Ferreiro Garcia, R. & Romero Gómez, J. & Carbia Carril, J., 2014. "Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 781-795.
- Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
- Domingues, António & Matos, Henrique A. & Pereira, Pedro M., 2022. "Novel integrated system of LNG regasification / electricity generation based on a cascaded two-stage Rankine cycle, with ternary mixtures as working fluids and seawater as hot utility," Energy, Elsevier, vol. 238(PC).
- Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
- Kim, Donghoi & Hwang, Chulmin & Gundersen, Truls & Lim, Youngsub, 2019. "Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers," Energy, Elsevier, vol. 173(C), pages 1119-1129.
- Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
- Khan, Mohd Shariq & I.A. Karimi, & Bahadori, Alireza & Lee, Moonyong, 2015. "Sequential coordinate random search for optimal operation of LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 89(C), pages 757-767.
More about this item
Keywords
Liquefied natural gas; LNG; Regasification; Energy storage; Cooling; Power;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:99:y:2019:i:c:p:1-15. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.