IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp366-381.html
   My bibliography  Save this article

Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas—A review

Author

Listed:
  • de Arespacochaga, N.
  • Valderrama, C.
  • Raich-Montiu, J.
  • Crest, M.
  • Mehta, S.
  • Cortina, J.L.

Abstract

This paper reviews the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas, which can be severely compromised by its volatile organic silicon compound (VOSiC) content. Almost 25 years after identifying silicon dioxide in the exhaust gases from engines powered using sewage and landfill gas, a wide range of studies have been conducted addressing the different stages of the siloxane life cycle. The cycle starts with the production and use of polydimethylsiloxane polymers in a wide range of industrial and domestic applications and its further dispersal into environmental compartments. Siloxanes are subsequently introduced into wastewater treatment plants, where as a result of their low biodegradability and high affinity to dissolved and particulate matter, they are first transferred from wastewater into sludge and later volatilized in biogas in anaerobic digesters. Biogas treatment technologies can reduce siloxane concentrations to less than 0.1mg/m3; adsorbent materials with micro- and mesoporous structures appear to be the most relevant technology in technical and economic terms. The state-of-the-art on siloxanes is vast and extensive, but there are still some knowledge gaps to be addressed in the future, such as the standardization of the methodology for off-line analysis, the development of on-line monitoring equipment, better understanding the fates of siloxanes in wastewater treatment processes to operate at specific conditions to avoid siloxanes-related problems, the development of more selective and regenerative removal technologies from biogas to reduce operating costs and even to recover silicon, and better understand the detrimental effects on energy recovery technologies to determine the inlet concentration limits. This work compiles the most relevant results available in the literature for each stage of the siloxane life cycle.

Suggested Citation

  • de Arespacochaga, N. & Valderrama, C. & Raich-Montiu, J. & Crest, M. & Mehta, S. & Cortina, J.L., 2015. "Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 366-381.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:366-381
    DOI: 10.1016/j.rser.2015.07.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115007534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasi, Saija & Lehtinen, Jenni & Rintala, Jukka, 2010. "Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants," Renewable Energy, Elsevier, vol. 35(12), pages 2666-2673.
    2. Bruno, Joan Carles & Ortega-López, Víctor & Coronas, Alberto, 2009. "Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant," Applied Energy, Elsevier, vol. 86(6), pages 837-847, June.
    3. Läntelä, J. & Rasi, S. & Lehtinen, J. & Rintala, J., 2012. "Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling," Applied Energy, Elsevier, vol. 92(C), pages 307-314.
    4. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazimierz Gaj, 2020. "Adsorptive Biogas Purification from Siloxanes—A Critical Review," Energies, MDPI, vol. 13(10), pages 1-10, May.
    2. Hou, Xifeng & Zheng, Yanhui & Lv, Siqi & Ma, Zichuan & Ma, Xiaolong, 2022. "Effective removal of hexamethyldisiloxane using a citric acid modified three-dimensional graphene aerogel," Renewable Energy, Elsevier, vol. 199(C), pages 62-70.
    3. Lv, Siqi & Zhang, Rui & He, Yuanping & Ma, Zichuan & Ma, Xiaolong, 2024. "Efficient reactive adsorption of hexamethyldisiloxane on MCM-41 supported sulfuric acid," Renewable Energy, Elsevier, vol. 224(C).
    4. González, Ruben & García-Cascallana, José & Gómez, Xiomar, 2023. "Energetic valorization of biogas. A comparison between centralized and decentralized approach," Renewable Energy, Elsevier, vol. 215(C).
    5. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    6. Calbry-Muzyka, Adelaide & Tarik, Mohamed & Gandiglio, Marta & Li, Jianrong & Foppiano, Debora & de Krom, Iris & Heikens, Dita & Ludwig, Christian & Biollaz, Serge, 2021. "Sampling, on-line and off-line measurement of organic silicon compounds at an industrial biogas-fed 175-kWe SOFC plant," Renewable Energy, Elsevier, vol. 177(C), pages 61-71.
    7. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Santos-Clotas, Eric & Cabrera-Codony, Alba & Martín, Maria J., 2020. "Coupling adsorption with biotechnologies for siloxane abatement from biogas," Renewable Energy, Elsevier, vol. 153(C), pages 314-323.
    9. Qiancheng Wang & Hsi-Hsien Wei & Qian Xu, 2018. "A Solid Oxide Fuel Cell (SOFC)-Based Biogas-from-Waste Generation System for Residential Buildings in China: A Feasibility Study," Sustainability, MDPI, vol. 10(7), pages 1-9, July.
    10. Eric Santos-Clotas & Alba Cabrera-Codony & Alba Castillo & Maria J. Martín & Manel Poch & Hèctor Monclús, 2019. "Environmental Decision Support System for Biogas Upgrading to Feasible Fuel," Energies, MDPI, vol. 12(8), pages 1-14, April.
    11. Roberto Paglini & Marta Gandiglio & Andrea Lanzini, 2022. "Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems," Energies, MDPI, vol. 15(10), pages 1-30, May.
    12. Md Muzammel Hossain & Yuan Yuan & Hengliang Huang & Ziwei Wang & Mohammad Abdul Baki & Zhihua Dai & Muhammad Rizwan & Shuanglian Xiong & Menghua Cao & Shuxin Tu, 2021. "Exposure to Dodecamethylcyclohexasiloxane (D6) Affects the Antioxidant Response and Gene Expression of Procambarus clarkii," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    13. Pascual, Celia & Cantera, Sara & Muñoz, Raúl & Lebrero, Raquel, 2021. "Siloxanes removal in a two-phase partitioning biotrickling filter: Influence of the EBRT and the organic phase," Renewable Energy, Elsevier, vol. 177(C), pages 52-60.
    14. Zheng, Yanhui & Hou, Xifeng & Liu, Yuheng & Ma, Zichuan, 2021. "Hexamethyldisiloxane removal from biogas using reduced graphene-oxide aerogels as adsorbents," Renewable Energy, Elsevier, vol. 178(C), pages 153-161.
    15. Pardon Nyamukamba & Patrick Mukumba & Evernice Shelter Chikukwa & Golden Makaka, 2020. "Biogas Upgrading Approaches with Special Focus on Siloxane Removal—A Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    16. Eva M. Salgado & Ana L. Gonçalves & Francisco Sánchez-Soberón & Nuno Ratola & José C. M. Pires, 2022. "Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes," IJERPH, MDPI, vol. 19(5), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasi, S. & Seppälä, M. & Rintala, J., 2013. "Organic silicon compounds in biogases produced from grass silage, grass and maize in laboratory batch assays," Energy, Elsevier, vol. 52(C), pages 137-142.
    2. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    3. Cvetković, Slobodan & Kaluđerović Radoičić, Tatjana & Vukadinović, Bojana & Kijevčanin, Mirjana, 2014. "Potentials and status of biogas as energy source in the Republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 407-416.
    4. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    5. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    6. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    7. Andrea Baccioli & Lorenzo Ferrari & Romain Guiller & Oumayma Yousfi & Francesco Vizza & Umberto Desideri, 2019. "Feasibility Analysis of Bio-Methane Production in a Biogas Plant: A Case Study," Energies, MDPI, vol. 12(3), pages 1-16, February.
    8. Basrawi, Mohamad Firdaus Bin & Yamada, Takanobu & Nakanishi, Kimio & Katsumata, Hideaki, 2012. "Analysis of the performances of biogas-fuelled micro gas turbine cogeneration systems (MGT-CGSs) in middle- and small-scale sewage treatment plants: Comparison of performances and optimization of MGTs," Energy, Elsevier, vol. 38(1), pages 291-304.
    9. Baccioli, Andrea & Ferrari, Lorenzo & Vizza, Francesco & Desideri, Umberto, 2019. "Potential energy recovery by integrating an ORC in a biogas plant," Applied Energy, Elsevier, vol. 256(C).
    10. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    11. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    12. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    13. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    14. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    15. Yan Bai & Xingyi Ma & Jing Zhang & Lei Zhang & Jing Bai, 2024. "Energy Efficiency Assessment and Prediction Based on Indicator System, PSO + AHP − FCE Model and Regression Algorithm," Energies, MDPI, vol. 17(8), pages 1-23, April.
    16. Zeb, Iftikhar & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Ndegwa, Pius & Yao, Yiqing & Kafle, Gopi Krishna, 2017. "Recycling separated liquid-effluent to dilute feedstock in anaerobic digestion of dairy manure," Energy, Elsevier, vol. 119(C), pages 1144-1151.
    17. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    18. Anna Lymperatou & Niels B. Rasmussen & Hariklia N. Gavala & Ioannis V. Skiadas, 2021. "Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects," Energies, MDPI, vol. 14(3), pages 1-16, February.
    19. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    20. Surita, Sharon C. & Tansel, Berrin, 2015. "Preliminary investigation to characterize deposits forming during combustion of biogas from anaerobic digesters and landfills," Renewable Energy, Elsevier, vol. 80(C), pages 674-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:366-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.