IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp153-161.html
   My bibliography  Save this article

Hexamethyldisiloxane removal from biogas using reduced graphene-oxide aerogels as adsorbents

Author

Listed:
  • Zheng, Yanhui
  • Hou, Xifeng
  • Liu, Yuheng
  • Ma, Zichuan

Abstract

Volatile methyl siloxane is a trace impurity in biogas produced by anaerobic bacteria. It decreases the energy utilization of biogas and thus needs to be removed. In this study, six reduced graphene-oxide aerogels (rGOAs) were prepared from industrial-grade multilayer graphene oxide by a hydrothermo-chemical reduction method in the presence of various amine additives, and the use of the rGOAs as adsorbents for hexamethyldisiloxane (L2) removal was investigated. The developed rGOAs were characterized via the Brunner-Emmet-Teller technique, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results revealed that the different pKa values of the amine molecules led to an increase in the rGOA contact angle, the specific surface area and the total pore volume in the following sequence: 0-rGOA < E-rGOA < A-rGOA < D-rGOA < T-rGOA < U-rGOA, representing the rGOAs without amine and those with ethylenediamine, aniline, diethylenetriamine, triethylenetetramine, and urea, respectively. Also, the adsorptive performance of the rGOAs materials for L2 was enhanced in this sequence. The adsorption capacities of rGOAs were significantly related to their textural properties and hydrophobicity. Moreover, U-rGOA exhibited the highest specific surface area (167.9 m2 g−1), total pore volume (0.737 cm3 g−1), and contact angle (146.8°), and its theory breakthrough adsorption capacity for L2 at 0 °C was 112.4 mg g−1. A lower bed-temperature, carrier gas flow rate, and inlet concentration were beneficial for the L2 adsorption by the U-rGOA. The spent U-rGOA adsorbent could be readily regenerated for reuse by heating at 80 °C. The results suggest that the rGOA materials have good application potential as adsorbents for methyl siloxane removal.

Suggested Citation

  • Zheng, Yanhui & Hou, Xifeng & Liu, Yuheng & Ma, Zichuan, 2021. "Hexamethyldisiloxane removal from biogas using reduced graphene-oxide aerogels as adsorbents," Renewable Energy, Elsevier, vol. 178(C), pages 153-161.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:153-161
    DOI: 10.1016/j.renene.2021.06.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Papurello, Davide & Chiodo, Vitaliano & Maisano, Susanna & Lanzini, Andrea & Santarelli, Massimo, 2018. "Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds," Renewable Energy, Elsevier, vol. 127(C), pages 481-494.
    3. Kazimierz Gaj, 2020. "Adsorptive Biogas Purification from Siloxanes—A Critical Review," Energies, MDPI, vol. 13(10), pages 1-10, May.
    4. Bulatov, Nurzhan K. & Sarzhanov, Dauren K. & Elubaev, Sagyntay Z. & Suleymenov, Tynys B. & Kasymzhanova, Kuralay S. & Balabayev, Oyum T., 2020. "Engineering and experimental testing of prototypes of biogas equipment," Renewable Energy, Elsevier, vol. 160(C), pages 278-287.
    5. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Ebadi, M.T. & Mamat, R. & Yusaf, T., 2020. "Biodiesels from three feedstock: The effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel," Renewable Energy, Elsevier, vol. 145(C), pages 190-201.
    6. Gong, Huijuan & Chen, Zezhi & Fan, Yangmei & Zhang, Mengqun & Wu, Weili & Wang, Weibing, 2015. "Surface modification of activated carbon for siloxane adsorption," Renewable Energy, Elsevier, vol. 83(C), pages 144-150.
    7. Gargiulo, Nicola & Peluso, Antonio & Aprea, Paolo & Marino, Ottavio & Cioffi, Raffaele & Jannelli, Elio & Cimino, Stefano & Lisi, Luciana & Caputo, Domenico, 2019. "Chromium-based MIL-101 metal organic framework as a fully regenerable D4 adsorbent for biogas purification," Renewable Energy, Elsevier, vol. 138(C), pages 230-235.
    8. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    9. de Arespacochaga, N. & Valderrama, C. & Raich-Montiu, J. & Crest, M. & Mehta, S. & Cortina, J.L., 2015. "Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 366-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Xifeng & Zheng, Yanhui & Lv, Siqi & Ma, Zichuan & Ma, Xiaolong, 2022. "Effective removal of hexamethyldisiloxane using a citric acid modified three-dimensional graphene aerogel," Renewable Energy, Elsevier, vol. 199(C), pages 62-70.
    2. Lv, Siqi & Zhang, Rui & He, Yuanping & Ma, Zichuan & Ma, Xiaolong, 2024. "Efficient reactive adsorption of hexamethyldisiloxane on MCM-41 supported sulfuric acid," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Siqi & Zhang, Rui & He, Yuanping & Ma, Zichuan & Ma, Xiaolong, 2024. "Efficient reactive adsorption of hexamethyldisiloxane on MCM-41 supported sulfuric acid," Renewable Energy, Elsevier, vol. 224(C).
    2. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    3. Hou, Xifeng & Zheng, Yanhui & Lv, Siqi & Ma, Zichuan & Ma, Xiaolong, 2022. "Effective removal of hexamethyldisiloxane using a citric acid modified three-dimensional graphene aerogel," Renewable Energy, Elsevier, vol. 199(C), pages 62-70.
    4. Kazimierz Gaj, 2020. "Adsorptive Biogas Purification from Siloxanes—A Critical Review," Energies, MDPI, vol. 13(10), pages 1-10, May.
    5. Kazimierz Gaj & Klaudia Cichuta, 2022. "Combined Biological Method for Simultaneous Removal of Hydrogen Sulphide and Volatile Methylsiloxanes from Biogas," Energies, MDPI, vol. 16(1), pages 1-18, December.
    6. Pardon Nyamukamba & Patrick Mukumba & Evernice Shelter Chikukwa & Golden Makaka, 2020. "Biogas Upgrading Approaches with Special Focus on Siloxane Removal—A Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    7. Md Muzammel Hossain & Yuan Yuan & Hengliang Huang & Ziwei Wang & Mohammad Abdul Baki & Zhihua Dai & Muhammad Rizwan & Shuanglian Xiong & Menghua Cao & Shuxin Tu, 2021. "Exposure to Dodecamethylcyclohexasiloxane (D6) Affects the Antioxidant Response and Gene Expression of Procambarus clarkii," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    8. Calbry-Muzyka, Adelaide & Tarik, Mohamed & Gandiglio, Marta & Li, Jianrong & Foppiano, Debora & de Krom, Iris & Heikens, Dita & Ludwig, Christian & Biollaz, Serge, 2021. "Sampling, on-line and off-line measurement of organic silicon compounds at an industrial biogas-fed 175-kWe SOFC plant," Renewable Energy, Elsevier, vol. 177(C), pages 61-71.
    9. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    10. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    11. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    12. James Darmey & Julius Cudjoe Ahiekpor & Satyanarayana Narra & Osei-Wusu Achaw & Herbert Fiifi Ansah, 2023. "Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review," Energies, MDPI, vol. 16(23), pages 1-21, November.
    13. Peng, Wei & Beggio, Giovanni & Pivato, Alberto & Zhang, Hua & Lü, Fan & He, Pinjing, 2022. "Applications of near infrared spectroscopy and hyperspectral imaging techniques in anaerobic digestion of bio-wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Roberto Paglini & Marta Gandiglio & Andrea Lanzini, 2022. "Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems," Energies, MDPI, vol. 15(10), pages 1-30, May.
    16. Jalali, Ramin & Rezaei, Mehran & Nematollahi, Behzad & Baghalha, Morteza, 2020. "Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane," Renewable Energy, Elsevier, vol. 149(C), pages 1053-1067.
    17. Owusu-Agyeman, I. & Bedaso, B. & Laumeyer, C. & Pan, C. & Malovanyy, A. & Baresel, C. & Plaza, E. & Cetecioglu, Z., 2023. "Volatile fatty acids production from municipal waste streams and use as a carbon source for denitrification: The journey towards full-scale application and revealing key microbial players," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    18. Pascual, Celia & Cantera, Sara & Muñoz, Raúl & Lebrero, Raquel, 2021. "Siloxanes removal in a two-phase partitioning biotrickling filter: Influence of the EBRT and the organic phase," Renewable Energy, Elsevier, vol. 177(C), pages 52-60.
    19. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2022. "Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    20. Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2022. "Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:153-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.