IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v118y2020ics1364032119307725.html
   My bibliography  Save this article

Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados

Author

Listed:
  • Thompson, T.M.
  • Young, B.R.
  • Baroutian, S.

Abstract

In recent years pelagic Sargassum has invaded the coastlines of the Caribbean region, Gulf of Mexico, Florida and West Africa, triggering human health concerns and negatively impacting environmental and economic productivity. Sargassaceae are nutrient-dense and currently utilized as fertiliser and food, while extracts of their phytochemicals exhibit unique biosorption and medicinal properties. This macroalgae also shows biofuel potential but hitherto, methane recovery is low due to a carbon to nitrogen ratio below 20:1, the restricted bioavailability of structurally complex carbohydrates for degradation and high insoluble fibre, salt, polyphenol and sulfur content. To optimise the microbial bioconversion of this biomass, pre-treatment and co-fermentation with other substrates have been explored. This paper reviews the challenges associated with, and potential solutions for, Sargassum inundation, and provides a critical evaluation of its bioconversion to biogas and fertiliser using anaerobic digestion technology. As the Caribbean region is primarily impacted by drifting Sargassum blooms, the paper concludes with a case study on Barbados and investigates the feasibility of repurposing this brown macroalgae from landfill disposal to a feedstock for electricity and fertiliser production. The results of this study indicate that Sargassum mono-digestion is unsustainable for energy extraction given its low bioconversion efficiency and unpredictable influx volume. Alternatively, the co-digestion of these seaweeds with organic municipal solid waste is economically and energetically advantageous, potentially enhancing energy recovery by 5-fold. Notably, the hydrogen sulfide fraction of the biogas generated must be controlled given its corrosive properties and potential to effect co-generation engine damage and failure. Additional income can also be derived through the agricultural application of the digestate generated both locally and externally, following ammonia treatment and heavy metal stripping. Further research and pilot-scale studies are therefore necessary to support the utilisation of this marine biomass in commercial energy and fertiliser production.

Suggested Citation

  • Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:rensus:v:118:y:2020:i:c:s1364032119307725
    DOI: 10.1016/j.rser.2019.109564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    2. Song, Minkyung & Duc Pham, Hong & Seon, Jiyun & Chul Woo, Hee, 2015. "Marine brown algae: A conundrum answer for sustainable biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 782-792.
    3. Tarwadi, S.J. & Chauhan, V.D., 1987. "Seaweed biomass as a source of energy," Energy, Elsevier, vol. 12(5), pages 375-378.
    4. Gurung, Anup & Van Ginkel, Steven W. & Kang, Woo-Chang & Qambrani, Naveed Ahmed & Oh, Sang-Eun, 2012. "Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study," Energy, Elsevier, vol. 43(1), pages 396-401.
    5. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    6. Victor Smetacek & Adriana Zingone, 2013. "Green and golden seaweed tides on the rise," Nature, Nature, vol. 504(7478), pages 84-88, December.
    7. Chen, Huihui & Zhou, Dong & Luo, Gang & Zhang, Shicheng & Chen, Jianmin, 2015. "Macroalgae for biofuels production: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 427-437.
    8. Raúl Tapia-Tussell & Julio Avila-Arias & Jorge Domínguez Maldonado & David Valero & Edgar Olguin-Maciel & Daisy Pérez-Brito & Liliana Alzate-Gaviria, 2018. "Biological Pretreatment of Mexican Caribbean Macroalgae Consortiums Using Bm-2 Strain ( Trametes hirsuta ) and Its Enzymatic Broth to Improve Biomethane Potential," Energies, MDPI, vol. 11(3), pages 1-11, February.
    9. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    10. Marquez, Gian Powell B. & Santiañez, Wilfred John E. & Trono, Gavino C. & Montaño, Marco Nemesio E. & Araki, Hiroshi & Takeuchi, Hisae & Hasegawa, Tatsuya, 2014. "Seaweed biomass of the Philippines: Sustainable feedstock for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1056-1068.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John James Milledge & Supattra Maneein & Elena Arribas López & Debbie Bartlett, 2020. "Sargassum Inundations in Turks and Caicos: Methane Potential and Proximate, Ultimate, Lipid, Amino Acid, Metal and Metalloid Analyses," Energies, MDPI, vol. 13(6), pages 1-27, March.
    2. Yiru Zhao & Nathalie Bourgougnon & Jean-Louis Lanoisellé & Thomas Lendormi, 2022. "Biofuel Production from Seaweeds: A Comprehensive Review," Energies, MDPI, vol. 15(24), pages 1-34, December.
    3. Enrique Salgado-Hernández & Ángel Isauro Ortiz-Ceballos & Sergio Martínez-Hernández & Erik Samuel Rosas-Mendoza & Ana Elena Dorantes-Acosta & Andrea Alvarado-Vallejo & Alejandro Alvarado-Lassman, 2022. "Methane Production of Sargassum spp. Biomass from the Mexican Caribbean: Solid–Liquid Separation and Component Distribution," IJERPH, MDPI, vol. 20(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Tedesco, Silvia & Mac Lochlainn, Dubhaltach & Olabi, Abdul Ghani, 2014. "Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production," Energy, Elsevier, vol. 76(C), pages 857-862.
    3. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    4. Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.
    5. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    6. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Xia, Ao & Murphy, Jerry D., 2015. "What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?," Energy, Elsevier, vol. 81(C), pages 352-360.
    7. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    8. Mhatre, Apurv & Gore, Suhas & Mhatre, Akanksha & Trivedi, Nitin & Sharma, Manju & Pandit, Reena & Anil, Annamma & Lali, Arvind, 2019. "Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca," Renewable Energy, Elsevier, vol. 132(C), pages 742-751.
    9. Tedesco, S. & Daniels, S., 2018. "Optimisation of biogas generation from brown seaweed residues: Compositional and geographical parameters affecting the viability of a biorefinery concept," Applied Energy, Elsevier, vol. 228(C), pages 712-723.
    10. Fasahati, Peyman & Liu, J. Jay, 2015. "Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae," Energy, Elsevier, vol. 93(P2), pages 2321-2336.
    11. Song, Minkyung & Duc Pham, Hong & Seon, Jiyun & Chul Woo, Hee, 2015. "Marine brown algae: A conundrum answer for sustainable biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 782-792.
    12. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    13. Tabassum, Muhammad Rizwan & Xia, Ao & Murphy, Jerry D., 2017. "Comparison of pre-treatments to reduce salinity and enhance biomethane yields of Laminaria digitata harvested in different seasons," Energy, Elsevier, vol. 140(P1), pages 546-551.
    14. Jin, Yiying & Chen, Ting & Chen, Xin & Yu, Zhixin, 2015. "Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant," Applied Energy, Elsevier, vol. 151(C), pages 227-236.
    15. McKennedy, Janet & Sherlock, Orla, 2015. "Anaerobic digestion of marine macroalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1781-1790.
    16. Chen, Huihui & Zhou, Dong & Luo, Gang & Zhang, Shicheng & Chen, Jianmin, 2015. "Macroalgae for biofuels production: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 427-437.
    17. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    18. Liao, Xiaocong & Li, Huan, 2015. "Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation," Applied Energy, Elsevier, vol. 148(C), pages 252-259.
    19. Rodriguez, C. & Alaswad, A. & El-Hassan, Z. & Olabi, A.G., 2018. "Improvement of methane production from P. canaliculata through mechanical pretreatment," Renewable Energy, Elsevier, vol. 119(C), pages 73-78.
    20. Weldemhret, Teklebrahan G. & Bañares, Angelo B. & Ramos, Kristine Rose M. & Lee, Won-Keun & Nisola, Grace M. & Valdehuesa, Kris Niño G. & Chung, Wook-Jin, 2020. "Current advances in ionic liquid-based pre-treatment and depolymerization of macroalgal biomass," Renewable Energy, Elsevier, vol. 152(C), pages 283-299.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:118:y:2020:i:c:s1364032119307725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.