IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6088-d448557.html
   My bibliography  Save this article

Biogas Upgrading Approaches with Special Focus on Siloxane Removal—A Review

Author

Listed:
  • Pardon Nyamukamba

    (Physics Department, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)

  • Patrick Mukumba

    (Physics Department, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)

  • Evernice Shelter Chikukwa

    (Chemistry Department, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)

  • Golden Makaka

    (Physics Department, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa)

Abstract

Biogas, a product of anaerobic digestion process that consists mainly of methane and carbon dioxide is a suitable alternative fuel if unwanted impurities are removed as they have a negative impact on the equipment. The most significant technologically troublesome trace compounds that must be removed are siloxanes since they are converted into silica on gas surface engines and turbines resulting in equipment damage. The quality of the gas is certainly improved by reducing the amount of impurities and the end use determines the extent of biogas cleaning needed. The major aim of this study was to compile information that can assist researchers or even designers in selecting a suitable technology to remove siloxanes. Siloxane removal definitely can be achieved using different methods and the effectiveness of each method relies on careful consideration of the characteristics of both biogas and siloxane, as well as the technological aspects of the method. Herein, we review on different cleaning techniques for siloxanes in raw biogas, the negative effects they have, their levels and technologies to reduce their concentrations. This review also incorporates the sources of the siloxanes, the progress to date on their removal and possible ways of regenerating adsorbents. The reviewed literature suggests that biogas upgrading technology should be promoted and encouraged especially in siloxane removal as it has detrimental effects on engines. The parameters and effectiveness of adsorption processes are discussed, and individual adsorbents are compared.

Suggested Citation

  • Pardon Nyamukamba & Patrick Mukumba & Evernice Shelter Chikukwa & Golden Makaka, 2020. "Biogas Upgrading Approaches with Special Focus on Siloxane Removal—A Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6088-:d:448557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kazimierz Gaj, 2020. "Adsorptive Biogas Purification from Siloxanes—A Critical Review," Energies, MDPI, vol. 13(10), pages 1-10, May.
    2. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    3. de Arespacochaga, N. & Valderrama, C. & Raich-Montiu, J. & Crest, M. & Mehta, S. & Cortina, J.L., 2015. "Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 366-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Xifeng & Zheng, Yanhui & Lv, Siqi & Ma, Zichuan & Ma, Xiaolong, 2022. "Effective removal of hexamethyldisiloxane using a citric acid modified three-dimensional graphene aerogel," Renewable Energy, Elsevier, vol. 199(C), pages 62-70.
    2. Lv, Siqi & Zhang, Rui & He, Yuanping & Ma, Zichuan & Ma, Xiaolong, 2024. "Efficient reactive adsorption of hexamethyldisiloxane on MCM-41 supported sulfuric acid," Renewable Energy, Elsevier, vol. 224(C).
    3. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    4. Eva M. Salgado & Ana L. Gonçalves & Francisco Sánchez-Soberón & Nuno Ratola & José C. M. Pires, 2022. "Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes," IJERPH, MDPI, vol. 19(5), pages 1-27, February.
    5. Chipo Shonhiwa & Yolanda Mapantsela & Golden Makaka & Patrick Mukumba & Ngwarai Shambira, 2023. "Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review," Energies, MDPI, vol. 16(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Siqi & Zhang, Rui & He, Yuanping & Ma, Zichuan & Ma, Xiaolong, 2024. "Efficient reactive adsorption of hexamethyldisiloxane on MCM-41 supported sulfuric acid," Renewable Energy, Elsevier, vol. 224(C).
    2. Hou, Xifeng & Zheng, Yanhui & Lv, Siqi & Ma, Zichuan & Ma, Xiaolong, 2022. "Effective removal of hexamethyldisiloxane using a citric acid modified three-dimensional graphene aerogel," Renewable Energy, Elsevier, vol. 199(C), pages 62-70.
    3. Zheng, Yanhui & Hou, Xifeng & Liu, Yuheng & Ma, Zichuan, 2021. "Hexamethyldisiloxane removal from biogas using reduced graphene-oxide aerogels as adsorbents," Renewable Energy, Elsevier, vol. 178(C), pages 153-161.
    4. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    5. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    6. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    7. Md Muzammel Hossain & Yuan Yuan & Hengliang Huang & Ziwei Wang & Mohammad Abdul Baki & Zhihua Dai & Muhammad Rizwan & Shuanglian Xiong & Menghua Cao & Shuxin Tu, 2021. "Exposure to Dodecamethylcyclohexasiloxane (D6) Affects the Antioxidant Response and Gene Expression of Procambarus clarkii," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    8. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    10. Calbry-Muzyka, Adelaide & Tarik, Mohamed & Gandiglio, Marta & Li, Jianrong & Foppiano, Debora & de Krom, Iris & Heikens, Dita & Ludwig, Christian & Biollaz, Serge, 2021. "Sampling, on-line and off-line measurement of organic silicon compounds at an industrial biogas-fed 175-kWe SOFC plant," Renewable Energy, Elsevier, vol. 177(C), pages 61-71.
    11. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    12. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    13. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    14. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    15. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    16. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    17. Yusuf, Noor & Almomani, Fares, 2023. "Recent advances in biogas purifying technologies: Process design and economic considerations," Energy, Elsevier, vol. 265(C).
    18. Hou, Rui & Zhang, Nachuan & Yang, Chengsheng & Zhao, Jing & Li, Peng & Sun, Bo, 2023. "A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methan," Energy, Elsevier, vol. 270(C).
    19. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    20. Esfandiyar Naeiji & Alireza Noorpoor & Hossein Ghanavati, 2022. "Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production," Sustainability, MDPI, vol. 14(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6088-:d:448557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.