IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp307-314.html
   My bibliography  Save this article

Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling

Author

Listed:
  • Läntelä, J.
  • Rasi, S.
  • Lehtinen, J.
  • Rintala, J.

Abstract

A pilot-scale counter current absorption process for upgrading municipal solid waste (MSW) landfill gas to produce vehicle fuel was studied using absorption, desorption and drying units and water as an absorbent. Continuous water recycling was used without adding new water to the system. The process parameters were defined by a previous study made with this pilot system. The effect of pressure (20–25bar), temperature (10–25°C) and water flow speed (5.5–11l/min) on the upgrading performance, trace compounds (siloxanes, halogenated compounds) and water quality were investigated. Raw landfill gas flow was kept constant at 7.41Nm3/h. Methane (CH4) and carbon dioxide (CO2) contents in the product gas were 86–90% and 4.5–8.0% with all studied pressures and temperatures. The remaining fraction in product gas was nitrogen (N2) (from 1% to 7%). Organic silicon compounds (siloxanes) were reduced by 16.6% and halogenated compounds similarly by 90.1% by water absorption. From studied process parameters, only water flow speed affected the removal of siloxanes and halogen compounds. The absorbent water pH was between 4.4–4.9, sulphide concentration between 0.1–1.0mg/l and carbonate concentration between 500–1000mg/l. The product gas drying system reduced the siloxane concentration by 99.1% and halogenated compounds by 99.9% compared to the raw landfill gas. In conclusion, the pilot-scale gas upgrading process studied appears to be able to produce gas with high energy content (approx 86–90% methane) using a closed water circulation system. When using a standard gas drying system, all trace compounds can be removed by over 99% compared to raw landfill gas.

Suggested Citation

  • Läntelä, J. & Rasi, S. & Lehtinen, J. & Rintala, J., 2012. "Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling," Applied Energy, Elsevier, vol. 92(C), pages 307-314.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:307-314
    DOI: 10.1016/j.apenergy.2011.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911006623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasi, S. & Seppälä, M. & Rintala, J., 2013. "Organic silicon compounds in biogases produced from grass silage, grass and maize in laboratory batch assays," Energy, Elsevier, vol. 52(C), pages 137-142.
    2. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    3. Bacsik, Zoltán & Cheung, Ocean & Vasiliev, Petr & Hedin, Niklas, 2016. "Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56," Applied Energy, Elsevier, vol. 162(C), pages 613-621.
    4. Wantz, Eliot & Lemonnier, Mathis & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2023. "Innovative high-pressure water scrubber for biogas upgrading at farm-scale using vacuum for water regeneration," Applied Energy, Elsevier, vol. 350(C).
    5. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    6. Kazimierz Gaj & Klaudia Cichuta, 2022. "Combined Biological Method for Simultaneous Removal of Hydrogen Sulphide and Volatile Methylsiloxanes from Biogas," Energies, MDPI, vol. 16(1), pages 1-18, December.
    7. Gao, Shida & Bo, Cuimei & Li, Jun & Niu, Chao & Lu, Xiaohua, 2020. "Multi-objective optimization and dynamic control of biogas pressurized water scrubbing process," Renewable Energy, Elsevier, vol. 147(P1), pages 2335-2344.
    8. de Arespacochaga, N. & Valderrama, C. & Raich-Montiu, J. & Crest, M. & Mehta, S. & Cortina, J.L., 2015. "Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 366-381.
    9. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Gong, Huijuan & Chen, Zezhi & Fan, Yangmei & Zhang, Mengqun & Wu, Weili & Wang, Weibing, 2015. "Surface modification of activated carbon for siloxane adsorption," Renewable Energy, Elsevier, vol. 83(C), pages 144-150.
    11. Kapoor, Rimika & Subbarao, P.M.V. & Vijay, Virendra Kumar & Shah, Goldy & Sahota, Shivali & Singh, Dhruv & Verma, Mahesh, 2017. "Factors affecting methane loss from a water scrubbing based biogas upgrading system," Applied Energy, Elsevier, vol. 208(C), pages 1379-1388.
    12. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    13. Moioli, Emanuele & Schildhauer, Tilman, 2022. "Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Hosseinipour, Sayed Amir & Mehrpooya, Mehdi, 2019. "Comparison of the biogas upgrading methods as a transportation fuel," Renewable Energy, Elsevier, vol. 130(C), pages 641-655.
    15. Yang, Liangcheng & Ge, Xumeng & Wan, Caixia & Yu, Fei & Li, Yebo, 2014. "Progress and perspectives in converting biogas to transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1133-1152.
    16. Chen, Man & Zhang, Fang & Zhang, Yan & Zeng, Raymond J., 2013. "Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading," Applied Energy, Elsevier, vol. 103(C), pages 428-434.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    2. Piotr Bórawski & Aneta Bełdycka-Bórawska & Zuzana Kapsdorferová & Tomasz Rokicki & Andrzej Parzonko & Lisa Holden, 2024. "Perspectives of Electricity Production from Biogas in the European Union," Energies, MDPI, vol. 17(5), pages 1-26, March.
    3. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    4. Yankun Sun & Wanzhen Liu & Xinzhong Wang & Haiyan Yang & Jun Liu, 2020. "Enhanced Adsorption of Carbon Dioxide from Simulated Biogas on PEI/MEA-Functionalized Silica," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
    5. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    6. Mulka, Rafał & Szulczewski, Wiesław & Szlachta, Józef & Mulka, Mariusz, 2016. "Estimation of methane production for batch technology – A new approach," Renewable Energy, Elsevier, vol. 90(C), pages 440-449.
    7. Zappini, Giovanni & Cocca, Paola & Rossi, Diana, 2010. "Performance analysis of energy recovery in an Italian municipal solid waste landfill," Energy, Elsevier, vol. 35(12), pages 5063-5069.
    8. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    9. Julia Burmistrova & Marc Beutel & Erin Hestir & Rebecca Ryals & Pramod Pandey, 2022. "Anaerobic Co-Digestion to Enhance Waste Management Sustainability at Yosemite National Park," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    10. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Starr, Katherine & Ramirez, Andrea & Meerman, Hans & Villalba, Gara & Gabarrell, Xavier, 2015. "Explorative economic analysis of a novel biogas upgrading technology using carbon mineralization. A case study for Spain," Energy, Elsevier, vol. 79(C), pages 298-309.
    12. Naja, Ghinwa M. & Alary, René & Bajeat, Philippe & Bellenfant, Gaël & Godon, Jean-Jacques & Jaeg, Jean-Philippe & Keck, Gérard & Lattes, Armand & Leroux, Carole & Modelon, Hugues & Moletta-Denat, Mari, 2011. "Assessment of biogas potential hazards," Renewable Energy, Elsevier, vol. 36(12), pages 3445-3451.
    13. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    14. Dahye Kim & Kyung-Tae Kim & Young-Kwon Park, 2020. "A Comparative Study on the Reduction Effect in Greenhouse Gas Emissions between the Combined Heat and Power Plant and Boiler," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    15. Venkatesh, G. & Elmi, Rashid Abdi, 2013. "Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)," Energy, Elsevier, vol. 58(C), pages 220-235.
    16. Rasi, Saija & Lehtinen, Jenni & Rintala, Jukka, 2010. "Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants," Renewable Energy, Elsevier, vol. 35(12), pages 2666-2673.
    17. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    18. Miyawaki, B. & Mariano, A.B. & Vargas, J.V.C. & Balmant, W. & Defrancheschi, A.C. & Corrêa, D.O. & Santos, B. & Selesu, N.F.H. & Ordonez, J.C. & Kava, V.M., 2021. "Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment," Renewable Energy, Elsevier, vol. 163(C), pages 1153-1165.
    19. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Kazemi-Beydokhti, Amin & Zeinali Heris, Saeed, 2012. "Thermal optimization of combined heat and power (CHP) systems using nanofluids," Energy, Elsevier, vol. 44(1), pages 241-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:307-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.