IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222017546.html
   My bibliography  Save this article

State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm

Author

Listed:
  • Liu, Gengfeng
  • Zhang, Xiangwen
  • Liu, Zhiming

Abstract

The data-driven method is used widely to estimate the state of health (SOH) of the battery, but the selection of data features and the data training methods affect the estimation results greatly. With the stacking algorithm, this paper proposes a multi-feature fusion model to estimate battery SOH by fusing different feature parameters and combining support vector regression (SVR) and long short-term memory network (LSTM). The feature parameters were extracted only from the current change curve of the constant voltage charging stage. The support vector regression based on grid search (GS-SVR) was selected as the primary-learner, and the primary SVR models were constructed through 5-fold cross-validation for different feature parameters. The LSTM was selected as the secondary-learner. With the stacking algorithm, LSTM was used to fuse multiple primary SVR models to form an ensemble learner model to improve the performance of multi-feature fusion. The battery aging test data set and NASA battery test data set were used to evaluate the effectiveness. The results verified the validity and superiority of the proposed method. Compared with the existing estimation methods, root mean square error is reduced by at least 0.11, and mean absolute percentage error is reduced by at least 0.12%.

Suggested Citation

  • Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222017546
    DOI: 10.1016/j.energy.2022.124851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
    2. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    3. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    4. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    5. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
    6. Jiang, Minqi & Liu, Jiapeng & Zhang, Lu & Liu, Chunyu, 2020. "An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Bian, Xiaolei & Liu, Longcheng & Yan, Jinying, 2019. "A model for state-of-health estimation of lithium ion batteries based on charging profiles," Energy, Elsevier, vol. 177(C), pages 57-65.
    8. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    9. Chuan-Xiang Yu & Yan-Min Xie & Zhao-Yu Sang & Shi-Ya Yang & Rui Huang, 2019. "State-Of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation," Energies, MDPI, vol. 12(21), pages 1-19, October.
    10. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    11. Wu, Ji & Zhang, Chenbin & Chen, Zonghai, 2016. "An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks," Applied Energy, Elsevier, vol. 173(C), pages 134-140.
    12. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
    13. You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
    14. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
    15. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    16. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    17. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Wang, Limei & Pan, Chaofeng & Liu, Liang & Cheng, Yong & Zhao, Xiuliang, 2016. "On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis," Applied Energy, Elsevier, vol. 168(C), pages 465-472.
    19. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
    20. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
    21. Weng, Caihao & Feng, Xuning & Sun, Jing & Peng, Huei, 2016. "State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking," Applied Energy, Elsevier, vol. 180(C), pages 360-368.
    22. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    23. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    24. Cheng, Yujie & Lu, Chen & Li, Tieying & Tao, Laifa, 2015. "Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach," Energy, Elsevier, vol. 90(P2), pages 1983-1993.
    25. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    26. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    27. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Fang & Min, Yongjun & Zhang, Ying & Zhang, Yong & Zuo, Hongfu & Bai, Fang, 2024. "State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Chen, Si-Zhe & Liang, Zikang & Yuan, Haoliang & Yang, Ling & Xu, Fangyuan & Fan, Yuanliang, 2023. "A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network," Energy, Elsevier, vol. 283(C).
    3. Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
    4. Xue, Jingsong & Ma, Wentao & Feng, Xiaoyang & Guo, Peng & Guo, Yaosong & Hu, Xianzhi & Chen, Badong, 2023. "Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 284(C).
    5. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    6. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
    7. Zhang, Yue & Wang, Yeqin & Zhang, Chu & Qiao, Xiujie & Ge, Yida & Li, Xi & Peng, Tian & Nazir, Muhammad Shahzad, 2024. "State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural netw," Applied Energy, Elsevier, vol. 356(C).
    8. Xiong, Ran & Wang, Shunli & Huang, Qi & Yu, Chunmei & Fernandez, Carlos & Xiao, Wei & Jia, Jun & Guerrero, Josep M., 2024. "Improved cooperative competitive particle swarm optimization and nonlinear coefficient temperature decreasing simulated annealing-back propagation methods for state of health estimation of energy stor," Energy, Elsevier, vol. 292(C).
    9. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Constructing battery impedance spectroscopy using partial current in constant-voltage charging or partial relaxation voltage," Applied Energy, Elsevier, vol. 356(C).
    10. Aliyon, Kasra & Rajaee, Fatemeh & Ritvanen, Jouni, 2023. "Use of artificial intelligence in reducing energy costs of a post-combustion carbon capture plant," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    2. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
    3. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    4. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    5. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
    6. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    7. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    8. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    9. Shi, Mingjie & Xu, Jun & Lin, Chuanping & Mei, Xuesong, 2022. "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, Elsevier, vol. 256(C).
    10. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
    12. Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
    13. Chen, Zhang & Shen, Wenjing & Chen, Liqun & Wang, Shuqiang, 2022. "Adaptive online capacity prediction based on transfer learning for fast charging lithium-ion batteries," Energy, Elsevier, vol. 248(C).
    14. Guo, Yuanjun & Yang, Zhile & Liu, Kailong & Zhang, Yanhui & Feng, Wei, 2021. "A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system," Energy, Elsevier, vol. 219(C).
    15. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    16. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
    17. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    18. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
    19. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Zhang, Yu & Peng, Zhen & Guan, Yong & Wu, Lifeng, 2021. "Prognostics of battery cycle life in the early-cycle stage based on hybrid model," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222017546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.