IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5866-d1109555.html
   My bibliography  Save this article

A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging

Author

Listed:
  • Aree Wangsupphaphol

    (Department of Electrical Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand)

  • Surachai Chaitusaney

    (Department of Electrical Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand)

  • Mohamed Salem

    (School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM), Nibong Tebal 14300, Penang, Malaysia)

Abstract

This study discusses the use of a retired battery from an electric vehicle for stationary energy storage electric vehicle charging in a residential household. This research provides a novel in-depth examination of the processes that may be necessary to investigate the life loss of a battery, whether new or used. The main contribution is to promote the feasibility of the application from both a technical and economic point of view. The semi-empirical models are then utilized to analyze the life fading that is used in economic studies. In terms of lower initial investment costs for the battery and solar photovoltaics, the numerical calculation demonstrates that the used second-life battery with a DOD of 85% has more advantages over a new battery in the same condition. Additionally, compared to a new battery, a second-life battery gradually loses life and benefits from recycling after a projected 10-year lifespan. These results support the feasibility of the project. A discussion of project hurdles is included in which the hybrid converter modification may be achieved. Policymakers are encouraged to keep this valuable scheme in mind for the sake of margin profit and environmental preservation.

Suggested Citation

  • Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5866-:d:1109555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, Vanika & Haque, Mohammed H. & Aziz, Syed Mahfuzul, 2019. "Energy cost minimization for net zero energy homes through optimal sizing of battery storage system," Renewable Energy, Elsevier, vol. 141(C), pages 278-286.
    2. Tong, Shi Jie & Same, Adam & Kootstra, Mark A. & Park, Jae Wan, 2013. "Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 104(C), pages 740-750.
    3. Liu, Jian & Zhong, Caifu, 2019. "An economic evaluation of the coordination between electric vehicle storage and distributed renewable energy," Energy, Elsevier, vol. 186(C).
    4. Fang, Yi & Shao, Zhiquan, 2022. "The Russia-Ukraine conflict and volatility risk of commodity markets," Finance Research Letters, Elsevier, vol. 50(C).
    5. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    6. Horesh, Noah & Quinn, Casey & Wang, Hongjie & Zane, Regan & Ferry, Mike & Tong, Shijie & Quinn, Jason C., 2021. "Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries," Applied Energy, Elsevier, vol. 295(C).
    7. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    8. Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    10. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    11. Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bozhi & Mahmoud Mohamed & Vahid Najafi Moghaddam Gilani & Ayesha Amjad & Mohammed Sh. Majid & Khalid Yahya & Mohamed Salem, 2023. "A Review of Wireless Pavement System Based on the Inductive Power Transfer in Electric Vehicles," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    2. Fernando A. Assis & Francisco C. R. Coelho & José Filho C. Castro & Antonio R. Donadon & Ronaldo A. Roncolatto & Pedro A. C. Rosas & Vittoria E. M. S. Andrade & Rafael G. Bento & Luiz C. P. Silva & Jo, 2024. "Assessment of Regulatory and Market Challenges in the Economic Feasibility of a Nanogrid: A Brazilian Case," Energies, MDPI, vol. 17(2), pages 1-18, January.
    3. Terkes, Musa & Arikan, Oktay & Gokalp, Erdin, 2024. "The effect of electric vehicle charging demand variability on optimal hybrid power systems with second-life lithium-ion or fresh Na–S batteries considering power quality," Energy, Elsevier, vol. 288(C).
    4. Le Trong Hieu & Ock Taeck Lim, 2023. "Effects of the Structure and Operating Parameters on the Performance of an Electric Scooter," Sustainability, MDPI, vol. 15(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    3. Colarullo, Linda & Thakur, Jagruti, 2022. "Second-life EV batteries for stationary storage applications in Local Energy Communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    6. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    7. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    8. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    9. Horesh, Noah & Quinn, Casey & Wang, Hongjie & Zane, Regan & Ferry, Mike & Tong, Shijie & Quinn, Jason C., 2021. "Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries," Applied Energy, Elsevier, vol. 295(C).
    10. Al-Wreikat, Yazan & Attfield, Emily Kate & Sodré, José Ricardo, 2022. "Model for payback time of using retired electric vehicle batteries in residential energy storage systems," Energy, Elsevier, vol. 259(C).
    11. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    12. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    13. Binghong Han & Jonathon R. Harding & Johanna K. S. Goodman & Zhuhua Cai & Quinn C. Horn, 2022. "End-of-Charge Temperature Rise and State-of-Health Evaluation of Aged Lithium-Ion Battery," Energies, MDPI, vol. 16(1), pages 1-17, December.
    14. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    15. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    16. Merlin Frank & Daniel Serafin Holz & Domenic Klohs & Christian Offermanns & Heiner Hans Heimes & Achim Kampker, 2024. "Identification and Mitigation of Predominant Challenges in the Utilization of Aged Traction Batteries within Stationary Second-Life Scenarios," Energies, MDPI, vol. 17(5), pages 1-17, February.
    17. Zhu, Mengping & Liu, Zhixue & Li, Jianbin & Zhu, Stuart X., 2020. "Electric vehicle battery capacity allocation and recycling with downstream competition," European Journal of Operational Research, Elsevier, vol. 283(1), pages 365-379.
    18. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    19. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    20. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Institute of Transportation Studies, Working Paper Series qt2ws2c6jw, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5866-:d:1109555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.