IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics0306261921007212.html
   My bibliography  Save this article

Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems

Author

Listed:
  • Steckel, Tobiah
  • Kendall, Alissa
  • Ambrose, Hanjiro

Abstract

The dramatic increase in electric vehicle (EV) sales has led to a rapid increase in deployed lithium-ion battery (LIB) capacity over the last decade. As EV batteries age and are retired from use in vehicles, they will require management. Second-life applications are often proposed as an environmentally and economically preferable management strategy to direct recycling or disposal. In particular, the repurposing of EV LIBs in stationary applications is expected to provide cost-effective solutions for utility-scale energy storage applications. However, the adoption of second-life battery energy storage systems (BESS) has been slow. One barrier to adoption is the lack of meaningful cost estimates of second-life BESS. Thus, this study develops a model for estimating the Levelized Cost of Storage (LCOS) for second-life BESS and develops a harmonized approach to compare second-life BESS and new BESS. This harmonized LCOS methodology predicts second-life BESS costs at 234–278 ($/MWh) for a 15-year project period, costlier than the harmonized results for a new BESS at 211 ($/MWh). Despite having a higher LCOS, the upfront costs for second-life BESS are 64.3–78.9% of new systems' costs. Results for second-life BESS are highly sensitive to assumptions of discount rate, depth of discharge, and module repurposing costs. If deemed environmentally or societally beneficial, policies should stimulate the use of second-life LIBs, such as providing incentives equal to or greater than those available for first life BESS. Further work can explore comparative economics at smaller scales and quantify non-economic benefits of second-life BESS.

Suggested Citation

  • Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007212
    DOI: 10.1016/j.apenergy.2021.117309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    2. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.
    4. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    5. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    6. Gur, K. & Chatzikyriakou, D. & Baschet, C. & Salomon, M., 2018. "The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis," Energy Policy, Elsevier, vol. 113(C), pages 535-545.
    7. Tong, Shi Jie & Same, Adam & Kootstra, Mark A. & Park, Jae Wan, 2013. "Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 104(C), pages 740-750.
    8. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    9. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    10. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    11. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongheng Li & Ali Hassan & Nishad Gupte & Wencong Su & Xuan Zhou, 2023. "Degradation Prediction and Cost Optimization of Second-Life Battery Used for Energy Arbitrage and Peak-Shaving in an Electric Grid," Energies, MDPI, vol. 16(17), pages 1-15, August.
    2. Pablo Carrasco Ortega & Pablo Durán Gómez & Julio César Mérida Sánchez & Fernando Echevarría Camarero & Ángel Á. Pardiñas, 2023. "Battery Energy Storage Systems for the New Electricity Market Landscape: Modeling, State Diagnostics, Management, and Viability—A Review," Energies, MDPI, vol. 16(17), pages 1-51, August.
    3. Zhang, Chenxi & Yang, Yi & Wang, Yunqi & Qiu, Jing & Zhao, Junhua, 2024. "Auction-based peer-to-peer energy trading considering echelon utilization of retired electric vehicle second-life batteries," Applied Energy, Elsevier, vol. 358(C).
    4. Bai, Hanyu & Lei, Shunbo & Geng, Sijia & Hu, Xiaosong & Li, Zhaojian & Song, Ziyou, 2024. "Techno-economic assessment of isolated micro-grids with second-life batteries: A reliability-oriented iterative design framework," Applied Energy, Elsevier, vol. 364(C).
    5. Al-Wreikat, Yazan & Attfield, Emily Kate & Sodré, José Ricardo, 2022. "Model for payback time of using retired electric vehicle batteries in residential energy storage systems," Energy, Elsevier, vol. 259(C).
    6. Song, Qianqian & Wang, Bo & Wang, Zhaohua & Wen, Lei, 2024. "Multi-objective capacity configuration optimization of the combined wind - Storage system considering ELCC and LCOE," Energy, Elsevier, vol. 301(C).
    7. Ruifei Ma & Shengyu Tao & Xin Sun & Yifang Ren & Chongbo Sun & Guanjun Ji & Jiahe Xu & Xuecen Wang & Xuan Zhang & Qiuwei Wu & Guangmin Zhou, 2024. "Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    9. Tang, Hong & Wang, Shengwei, 2023. "Life-cycle economic analysis of thermal energy storage, new and second-life batteries in buildings for providing multiple flexibility services in electricity markets," Energy, Elsevier, vol. 264(C).
    10. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Gunther Friedl & Stefan Reichelstein & Amadeus Bach & Maximilian Blaschke & Lukas Kemmer, 2023. "Applications of the levelized cost concept," Journal of Business Economics, Springer, vol. 93(6), pages 1125-1148, August.
    12. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    13. Wei He & Rujie Liu & Tao Han & Jicheng Zhang & Yixun Lei & Shan Xu & Hongwei Yu & Zhu Li, 2024. "Cooperative Construction of Renewable Energy and Energy Storage System: Research on Evolutionary Game Model Based on Continuous Strategy and Random Disturbance," Energies, MDPI, vol. 17(23), pages 1-24, November.
    14. Geng, Jingxuan & Gao, Suofen & Sun, Xin & Liu, Zongwei & Zhao, Fuquan & Hao, Han, 2022. "Potential of electric vehicle batteries second use in energy storage systems: The case of China," Energy, Elsevier, vol. 253(C).
    15. Armin Razmjoo & Arezoo Ghazanfari & Poul Alberg Østergaard & Mehdi Jahangiri & Andreas Sumper & Sahar Ahmadzadeh & Reza Eslamipoor, 2024. "Moving Toward the Expansion of Energy Storage Systems in Renewable Energy Systems—A Techno-Institutional Investigation with Artificial Intelligence Consideration," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    16. Hua Song & Huaizhi Chen & Yanbo Wang & Xiang-E Sun, 2024. "An Overview About Second-Life Battery Utilization for Energy Storage: Key Challenges and Solutions," Energies, MDPI, vol. 17(23), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    3. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Institute of Transportation Studies, Working Paper Series qt2ws2c6jw, Institute of Transportation Studies, UC Davis.
    4. Al-Wreikat, Yazan & Attfield, Emily Kate & Sodré, José Ricardo, 2022. "Model for payback time of using retired electric vehicle batteries in residential energy storage systems," Energy, Elsevier, vol. 259(C).
    5. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    6. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    7. Bai, Hanyu & Lei, Shunbo & Geng, Sijia & Hu, Xiaosong & Li, Zhaojian & Song, Ziyou, 2024. "Techno-economic assessment of isolated micro-grids with second-life batteries: A reliability-oriented iterative design framework," Applied Energy, Elsevier, vol. 364(C).
    8. Horesh, Noah & Quinn, Casey & Wang, Hongjie & Zane, Regan & Ferry, Mike & Tong, Shijie & Quinn, Jason C., 2021. "Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries," Applied Energy, Elsevier, vol. 295(C).
    9. Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    11. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    12. Hoarau, Quentin & Lorang, Etienne, 2022. "An assessment of the European regulation on battery recycling for electric vehicles," Energy Policy, Elsevier, vol. 162(C).
    13. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    14. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    15. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    16. Binghong Han & Jonathon R. Harding & Johanna K. S. Goodman & Zhuhua Cai & Quinn C. Horn, 2022. "End-of-Charge Temperature Rise and State-of-Health Evaluation of Aged Lithium-Ion Battery," Energies, MDPI, vol. 16(1), pages 1-17, December.
    17. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Jülch, Verena, 2016. "Comparison of electricity storage options using levelized cost of storage (LCOS) method," Applied Energy, Elsevier, vol. 183(C), pages 1594-1606.
    19. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    20. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.