IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220312858.html
   My bibliography  Save this article

Echelon utilization of waste power batteries in new energy vehicles: Review of Chinese policies

Author

Listed:
  • Zhang, Huiming
  • Huang, Jiying
  • Hu, Ruohan
  • Zhou, Dequn
  • Khan, Haroon ur Rashid
  • Ma, Changxian

Abstract

Echelon utilization of waste power batteries in new energy vehicles has high market potential in China. However, bottlenecks, such as product standards, echelon utilization technology, and recycling network systems, have given rise to the urgent need for policy improvement. This study uses content analysis to code policies and investigate the central and local policies on the echelon utilization of waste power batteries in China from two dimensions, namely, basic policy instruments and industrial chain processes. Results show that in terms of basic policy instruments, central policies focus on structural mandatory instruments, whereas local policies focus on contractual inducement, which tend to be diversified. Interactive impact instruments are the least frequently used in both central and local policies. From the perspective of the recycling industry chain, central and local policy instruments concentrate mainly on the echelon utilization and detection and evaluation stages and focus less on the collection and transportation stages. Suggestions are offered as follows. (1) Increase the use of interactive impact instruments and optimize their classification. (2) Emphasize the matching between basic policy instruments and the recycling industry chain.(3) The policy instrument combination of “one place, one policy” could be implemented.

Suggested Citation

  • Zhang, Huiming & Huang, Jiying & Hu, Ruohan & Zhou, Dequn & Khan, Haroon ur Rashid & Ma, Changxian, 2020. "Echelon utilization of waste power batteries in new energy vehicles: Review of Chinese policies," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312858
    DOI: 10.1016/j.energy.2020.118178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arimura, Toshi H. & Hibiki, Akira & Katayama, Hajime, 2008. "Is a voluntary approach an effective environmental policy instrument?: A case for environmental management systems," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 281-295, May.
    2. Spyridaki, Niki-Artemis & Banaka, Stefania & Flamos, Alexandros, 2016. "Evaluating public policy instruments in the Greek building sector," Energy Policy, Elsevier, vol. 88(C), pages 528-543.
    3. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    4. Assunção, André & Moura, Pedro S. & de Almeida, Aníbal T., 2016. "Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy," Applied Energy, Elsevier, vol. 181(C), pages 120-131.
    5. Gur, K. & Chatzikyriakou, D. & Baschet, C. & Salomon, M., 2018. "The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis," Energy Policy, Elsevier, vol. 113(C), pages 535-545.
    6. Diao, Mi, 2019. "Towards sustainable urban transport in Singapore: Policy instruments and mobility trends," Transport Policy, Elsevier, vol. 81(C), pages 320-330.
    7. Mercier, Jean & Carrier, Mario & Duarte, Fábio & Tremblay-Racicot, Fanny, 2016. "Policy tools for sustainable transport in three cities of the Americas: Seattle, Montreal and Curitiba," Transport Policy, Elsevier, vol. 50(C), pages 95-105.
    8. Zhang, Youlang & Li, Yan & Tao, Yibin & Ye, Jilei & Pan, Aiqiang & Li, Xinzhou & Liao, Qiangqiang & Wang, Zhiqin, 2020. "Performance assessment of retired EV battery modules for echelon use," Energy, Elsevier, vol. 193(C).
    9. Sironen, Susanna & Primmer, Eeva & Leskinen, Pekka & Similä, Jukka & Punttila, Pekka, 2020. "Context sensitive policy instruments: A multi-criteria decision analysis for safeguarding forest habitats in Southwestern Finland," Land Use Policy, Elsevier, vol. 92(C).
    10. Roy Rothwell & Walter Zegveld, 1984. "An Assessment Of Government Innovation Policies," Review of Policy Research, Policy Studies Organization, vol. 3(3‐4), pages 436-444, May.
    11. Li, Lin & Dababneh, Fadwa & Zhao, Jing, 2018. "Cost-effective supply chain for electric vehicle battery remanufacturing," Applied Energy, Elsevier, vol. 226(C), pages 277-286.
    12. Zeng, Xianlai & Li, Jinhui & Liu, Lili, 2015. "Solving spent lithium-ion battery problems in China: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1759-1767.
    13. Mirzaei, Arezoo & Knierim, Andrea & Fealy Nahavand, Saeid & Shokri, Shahab Alddin & Mahmoudi, Hossein, 2019. "Assessment of policy instruments towards improving the water reservoirs’ governance in Northern Iran," Agricultural Water Management, Elsevier, vol. 211(C), pages 48-58.
    14. Han, Xiaojuan & Liang, Yubo & Ai, Yaoyao & Li, Jianlin, 2018. "Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries," Energy, Elsevier, vol. 165(PA), pages 326-339.
    15. S. Villamayor-Tomas & A. Thiel & Laurence Amblard & D. Zikos & E. Blanco, 2019. "Diagnosing the role of the state for local collective action: types of action situations and policy instruments [Le rôle de l'Etat dans l'action collective locale : types de situations d'action et ," Post-Print hal-02609286, HAL.
    16. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    17. Hongtao Yi & Richard C. Feiock, 2012. "Policy Tool Interactions and the Adoption of State Renewable Portfolio Standards," Review of Policy Research, Policy Studies Organization, vol. 29(2), pages 193-206, March.
    18. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    19. Dutta, Tanushree & Kim, Ki-Hyun & Deep, Akash & Szulejko, Jan E. & Vellingiri, Kowsalya & Kumar, Sandeep & Kwon, Eilhann E. & Yun, Seong-Taek, 2018. "Recovery of nanomaterials from battery and electronic wastes: A new paradigm of environmental waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3694-3704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Dongsheng & Tan, Binbin, 2023. "An evolutionary game analysis of new energy vehicles promotion considering carbon tax in post-subsidy era," Energy, Elsevier, vol. 264(C).
    2. Chen, Jiumei & Zhang, Wen & Gong, Bengang & Zhang, Xiaoqi & Li, Hongping, 2022. "Optimal policy for the recycling of electric vehicle retired power batteries," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Han, Jing & Guo, Ju-E & Cai, Xun & Lv, Cheng & Lev, Benjamin, 2022. "An analysis on strategy evolution of research & development in cooperative innovation network of new energy vehicle within policy transition period," Omega, Elsevier, vol. 112(C).
    4. Qiyao Liu & Xiaodong Zhu, 2024. "Incentive strategies for retired power battery closed-loop supply chain considering corporate social responsibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 19013-19050, July.
    5. Gao, Jinwu & Jiang, Shuman & Zhang, Yi, 2024. "To adopt blockchain or not? A game theoretic analysis of profit and environmental impact in decommissioned EV lithium-ion battery recycling," Applied Energy, Elsevier, vol. 367(C).
    6. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    7. Zhang, Huiming & Zhu, Kexin & Hang, Zixuan & Zhou, Dequn & Zhou, Yi & Xu, Zhidong, 2022. "Waste battery-to-reutilization decisions under government subsidies: An evolutionary game approach," Energy, Elsevier, vol. 259(C).
    8. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Wu, Wei & Lin, Boqiang & Xie, Chunping & Elliott, Robert J.R. & Radcliffe, Jonathan, 2020. "Does energy storage provide a profitable second life for electric vehicle batteries?," Energy Economics, Elsevier, vol. 92(C).
    4. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    5. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Lei Zhang & Yingqi Liu & Beibei Pang & Bingxiang Sun & Ari Kokko, 2020. "Second Use Value of China’s New Energy Vehicle Battery: A View Based on Multi-Scenario Simulation," Sustainability, MDPI, vol. 12(1), pages 1-25, January.
    7. Al-Wreikat, Yazan & Attfield, Emily Kate & Sodré, José Ricardo, 2022. "Model for payback time of using retired electric vehicle batteries in residential energy storage systems," Energy, Elsevier, vol. 259(C).
    8. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    9. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    10. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    11. Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
    12. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
    14. Rafael G. Nagel & Vitor Fernão Pires & Jony L. Silveira & Armando Cordeiro & Daniel Foito, 2023. "Financial Analysis of Household Photovoltaic Self-Consumption in the Context of the Vehicle-to-Home ( V2H ) in Portugal," Energies, MDPI, vol. 16(3), pages 1-21, January.
    15. Tang, Yanyan & Zhang, Qi & Mclellan, Benjamin & Li, Hailong, 2018. "Study on the impacts of sharing business models on economic performance of distributed PV-Battery systems," Energy, Elsevier, vol. 161(C), pages 544-558.
    16. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    17. Enci Wang & Jianyun Nie & Yuhan Wang, 2023. "Government Subsidy Strategies for the New Energy Vehicle Power Battery Recycling Industry," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    18. Sebastian Bräuer & Florian Plenter & Benjamin Klör & Markus Monhof & Daniel Beverungen & Jörg Becker, 2020. "Transactions for trading used electric vehicle batteries: theoretical underpinning and information systems design principles," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 311-342, April.
    19. Horesh, Noah & Quinn, Casey & Wang, Hongjie & Zane, Regan & Ferry, Mike & Tong, Shijie & Quinn, Jason C., 2021. "Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries," Applied Energy, Elsevier, vol. 295(C).
    20. Gu, Pingwei & Zhang, Ying & Duan, Bin & Zhang, Chenghui & Kang, Yongzhe, 2024. "Rapid and flexible lithium-ion battery performance evaluation using random charging curve based on deep learning," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.