Catalytic one-pot conversion of biomass-derived furfural to ethyl levulinate over bifunctional Nb/Ni@OMC
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.09.117
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Guizhuan & Chang, Chun & Fang, Shuqi & Ma, Xiaojian, 2015. "Cellulose reactivity in ethanol at elevate temperature and the kinetics of one-pot preparation of ethyl levulinate from cellulose," Renewable Energy, Elsevier, vol. 78(C), pages 583-589.
- Mohammadbagheri, Zahra & Najafi Chermahini, Alireza, 2020. "Direct production of hexyl levulinate as a potential fuel additive from glucose catalyzed by modified dendritic fibrous nanosilica," Renewable Energy, Elsevier, vol. 147(P1), pages 2229-2237.
- Sert, Murat & Arslanoğlu, Alparslan & Ballice, Levent, 2018. "Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents," Renewable Energy, Elsevier, vol. 118(C), pages 993-1000.
- Liu, Jie & Wang, Xue-Qian & Yang, Bei-Bei & Liu, Chun-Ling & Xu, Chun-Li & Dong, Wen-Sheng, 2018. "Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite," Renewable Energy, Elsevier, vol. 120(C), pages 231-240.
- Wang, Qiong & Qi, Wei & Wang, Wen & Zhang, Yu & Leksawasdi, Noppol & Zhuang, Xinshu & Yu, Qiang & Yuan, Zhenhong, 2019. "Production of furfural with high yields from corncob under extremely low water/solid ratios," Renewable Energy, Elsevier, vol. 144(C), pages 139-146.
- Li, Mengzhu & Wei, Junnan & Yan, Guihua & Liu, Huai & Tang, Xing & Sun, Yong & Zeng, Xianhai & Lei, Tingzhou & Lin, Lu, 2020. "Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 916-923.
- Li, Lu & Yan, Bin & Li, Huaxiao & Yu, Shitao & Ge, Xiaoping, 2020. "Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst," Renewable Energy, Elsevier, vol. 146(C), pages 643-650.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Xiaolan & Gao, Pei & Shen, Boxiong & Wang, Xiaoqi & Yue, Tian & Han, Zhibin, 2023. "Recent advances in lignin-derived mesoporous carbon based-on template methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Xu, Yingying & Guo, Haixin & Qi, Xinhua, 2024. "One-pot assembly of sulfated lignin/Zr coordination polymer for efficient alcoholysis of furfuryl alcohol to methyl levulinate," Renewable Energy, Elsevier, vol. 229(C).
- Song, Mengxue & Qiu, Chonghao & Ma, Pengfei & Zhong, Jiawei & Zhang, Zhuohan & Fang, Weiping & Song, Wenjing & Fan, Jianqiang & Lai, Weikun, 2023. "Effect of Lewis and Brønsted acidity in Ni/ZSM-5 on catalytic reductive etherification of furfural and alcohols," Renewable Energy, Elsevier, vol. 212(C), pages 468-477.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Haixin & Hirosaki, Yuta & Qi, Xinhua & Lee Smith, Richard, 2020. "Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials," Renewable Energy, Elsevier, vol. 157(C), pages 951-958.
- Zhang, Qilin & Guo, Zongwei & Zeng, Xianhai & Ramarao, Bandaru & Xu, Feng, 2021. "A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations," Renewable Energy, Elsevier, vol. 179(C), pages 351-358.
- Li, Mengzhu & Wei, Junnan & Yan, Guihua & Liu, Huai & Tang, Xing & Sun, Yong & Zeng, Xianhai & Lei, Tingzhou & Lin, Lu, 2020. "Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 916-923.
- Wiranarongkorn, Kunlanan & Im-orb, Karittha & Panpranot, Joongjai & Maréchal, François & Arpornwichanop, Amornchai, 2021. "Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation," Energy, Elsevier, vol. 226(C).
- Liu, Jie & Wang, Xue-Qian & Yang, Bei-Bei & Liu, Chun-Ling & Xu, Chun-Li & Dong, Wen-Sheng, 2018. "Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite," Renewable Energy, Elsevier, vol. 120(C), pages 231-240.
- Mankar, Akshay R. & Pandey, Ashish & Modak, Arindam & Pant, K.K., 2021. "Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst," Renewable Energy, Elsevier, vol. 177(C), pages 643-651.
- Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Tian, Hongli & Shao, Yuewen & Liang, Chuanfei & Xu, Qing & Zhang, Lijun & Zhang, Shu & Liu, Shuhua & Hu, Xun, 2020. "Sulfated attapulgite for catalyzing the conversion of furfuryl alcohol to ethyl levulinate: Impacts of sulfonation on structural transformation and evolution of acidic sites on the catalyst," Renewable Energy, Elsevier, vol. 162(C), pages 1576-1586.
- Chai, Yu & Tian, Xin-Yu & Zheng, Xiao-Ping & Du, Ya-Peng & Zhang, Yu-Cang & Zheng, Yan-Zhen, 2024. "An effective approach for chitosan conversion to 5-hydroxymethylfurfural catalyzed by bio-based organic acid with ionic liquids additive," Renewable Energy, Elsevier, vol. 221(C).
- Yang, Luan & Zheng, Tianran & Huang, Chen & Yao, Jianfeng, 2022. "Using deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin utilization of masson pine," Renewable Energy, Elsevier, vol. 195(C), pages 681-687.
- Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Dookheh, Maryam & Najafi Chermahini, Alireza & Saraji, Mohammad, 2022. "Organic-inorganic bi-functionalized hybrid KIT-5: A toolbox for catalytic dehydration of xylose to n-hexyl levulinate," Renewable Energy, Elsevier, vol. 200(C), pages 527-536.
- Du, Ya-Peng & Tian, Xin-Yu & Zheng, Xiao-Ping & Chai, Yu & Zhang, Yu-Cang & Zheng, Yan-Zhen, 2024. "Efficient preparation of 5-hydroxymethylfurfural from cellulose via one-step combination of mechanical and chemical pre-treatment," Renewable Energy, Elsevier, vol. 229(C).
- Mohammadbagheri, Zahra & Najafi Chermahini, Alireza, 2020. "Direct production of hexyl levulinate as a potential fuel additive from glucose catalyzed by modified dendritic fibrous nanosilica," Renewable Energy, Elsevier, vol. 147(P1), pages 2229-2237.
- Bains, Rohit & Kumar, Ajay & Chauhan, Arvind Singh & Das, Pralay, 2022. "Dimethyl carbonate solvent assisted efficient conversion of lignocellulosic biomass to 5- hydroxymethylfurfural and furfural," Renewable Energy, Elsevier, vol. 197(C), pages 237-243.
- Lu, Qiaomin & Yan, Dong & Wu, Peiwen & Chen, Li & Yagoub, Abu ElGasim A. & Ji, Qinghua & Yu, Xiaojie & Zhou, Cunshan, 2022. "Ultrasound-NATDES/DMSO system for corn straw biomass conversion into platform compounds," Renewable Energy, Elsevier, vol. 190(C), pages 675-683.
- Oprescu, Elena-Emilia & Enascuta, Cristina-Emanuela & Doukeh, Rami & Calin, Catalina & Lavric, Vasile, 2021. "Characterizing and using a new bi-functional catalyst to sustainably synthesize methyl levulinate from biomass carbohydrates," Renewable Energy, Elsevier, vol. 176(C), pages 651-662.
- Huang, Rulu & Liu, Huai & Zhang, Junhua & Cheng, Yuan & He, Liang & Peng, Lincai, 2022. "Tea polyphenol and HfCl4 Co-doped polyacrylonitrile nanofiber for highly efficient transformation of levulinic acid to γ-valerolactone," Renewable Energy, Elsevier, vol. 200(C), pages 234-243.
- Cao, Xincheng & Long, Feng & Zhai, Qiaolong & Liu, Peng & Xu, Junming & Jiang, Jianchun, 2020. "Enhancement of fatty acids hydrodeoxygenation selectivity to diesel-range alkanes over the supported Ni-MoOx catalyst and elucidation of the active phase," Renewable Energy, Elsevier, vol. 162(C), pages 2113-2125.
- Xiao, Tianyuan & Hou, Minjie & Guo, Xu & Cao, Xinyu & Li, Changgeng & Zhang, Qi & Jia, Wenchao & Sun, Yanning & Guo, Yanzhu & Shi, Haiqiang, 2024. "Recent progress in deep eutectic solvent(DES) fractionation of lignocellulosic components : A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
More about this item
Keywords
Bifunctional catalyst; Furfural; Ethyl levulinate; Biomass; OMC;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:821-831. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.