IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics1364032123006652.html
   My bibliography  Save this article

Recent advances in lignin-derived mesoporous carbon based-on template methods

Author

Listed:
  • Zhao, Xiaolan
  • Gao, Pei
  • Shen, Boxiong
  • Wang, Xiaoqi
  • Yue, Tian
  • Han, Zhibin

Abstract

Biomass resources are considered one of the most promising renewable materials to replace fossil resources. In an effort to foster sustainable development, many recent research endeavors have centered around the exploration of biomass valorization. The global agricultural land area is about five billion hectares, accounting for 38 % of the world's land area. Each year, nature synthesizes roughly 170 billion tons of biomass via photosynthesis, a substantial part of which is comprised of lignocellulosic agroforestry residues. Lignin, a vital component of lignocellulose, constitutes about 30 % of the organic carbon in the biosphere, ranking as the second most abundant biomass resource on Earth. Therefore, lignin has broad prospects in the field of high-performance mesoporous carbon due to its polyphenolic properties. This review meticulously outlines the principles, advantages, limitations, and the structural framework of template methods utilized in crafting mesoporous carbon from lignin. Moreover, it examines the latest usage of lignin-based mesoporous carbon in various domains such as adsorption, catalysis, drug delivery, thermal and hydrogen storage, along with electrochemical energy storage (encompassing lithium-ion batteries, solar cells, fuel cells, and supercapacitors) and sustainability evaluations. In conclusion, this discourse offers a fresh perspective on the potential developments in the preparation and applications of templated lignin-based mesoporous carbon. Undoubtedly, the strategic design of templated lignin-based mesoporous carbon will propel its widespread application across diverse sectors, thereby fostering a greener and more sustainable society.

Suggested Citation

  • Zhao, Xiaolan & Gao, Pei & Shen, Boxiong & Wang, Xiaoqi & Yue, Tian & Han, Zhibin, 2023. "Recent advances in lignin-derived mesoporous carbon based-on template methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006652
    DOI: 10.1016/j.rser.2023.113808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123006652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shuai & Eberhardt, Thomas L. & Guo, Dayi & Feng, Junfeng & Pan, Hui, 2022. "Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system," Renewable Energy, Elsevier, vol. 190(C), pages 1-10.
    2. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    3. Richard Nadányi & Aleš Ház & Anton Lisý & Michal Jablonský & Igor Šurina & Veronika Majová & Andrej Baco, 2022. "Lignin Modifications, Applications, and Possible Market Prices," Energies, MDPI, vol. 15(18), pages 1-16, September.
    4. Tang, Yuanjun & Dong, Jun & Li, Guoneng & Zheng, Youqu & Chi, Yong & Nzihou, Ange & Weiss-Hortala, Elsa & Ye, Chao, 2020. "Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China," Energy, Elsevier, vol. 205(C).
    5. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    6. Tang, Yiwei & Liu, Xiaoning & Xi, Ran & Liu, Le & Qi, Xinhua, 2022. "Catalytic one-pot conversion of biomass-derived furfural to ethyl levulinate over bifunctional Nb/Ni@OMC," Renewable Energy, Elsevier, vol. 200(C), pages 821-831.
    7. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Li, Qiao & Song, Guohui & Xiao, Jun & Hao, Jingwen & Li, Haiyan & Yuan, Yanyan, 2020. "Exergetic life cycle assessment of hydrogen production from biomass staged-gasification," Energy, Elsevier, vol. 190(C).
    9. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Peizhe & Xu, Zaifeng & Yao, Dong & Qi, Huaqing & Zhu, Zhaoyou & Wang, Yinglong & Li, Xin & Liu, Zhiqiang & Yang, Sheng, 2022. "Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process," Energy, Elsevier, vol. 261(PB).
    2. Elena C. Prenovitz & Peter K. Hazlett & Chandler S. Reilly, 2023. "Can Markets Improve Recycling Performance? A Cross-Country Regression Analysis and Case Studies," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    3. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    4. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    5. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    6. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).
    7. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    9. Nguyen, Long Thanh & Doan, Vinh Thanh Chau & Nguyen, Trinh Hao & Phan, Ha Bich & Pham, Viet Van & Dang, Chinh Van & Tran, Phuong Hoang, 2024. "One-pot aerobic conversion of fructose to 2,5-diformylfuran using silver-decorated carbon materials," Renewable Energy, Elsevier, vol. 221(C).
    10. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    11. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    12. Mari-Isabella Stan, 2022. "An Analysis of the Municipal Waste Management of Romania and Bulgaria in the European Context," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 166-174, September.
    13. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
    14. Nathaniel Anderson & Hongmei Gu & Richard Bergman, 2021. "Comparison of Novel Biochars and Steam Activated Carbon from Mixed Conifer Mill Residues," Energies, MDPI, vol. 14(24), pages 1-19, December.
    15. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Kächele, Rebecca & Nurkowski, Daniel & Martin, Jacob & Akroyd, Jethro & Kraft, Markus, 2019. "An assessment of the viability of alternatives to biodiesel transport fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    18. Qi, Jingwei & Wang, Yijie & Xu, Pengcheng & Hu, Ming & Huhe, Taoli & Ling, Xiang & Yuan, Haoran & Chen, Yong, 2024. "Study on the Co-gasification characteristics of biomass and municipal solid waste based on machine learning," Energy, Elsevier, vol. 290(C).
    19. Xu, Yingying & Guo, Haixin & Qi, Xinhua, 2024. "One-pot assembly of sulfated lignin/Zr coordination polymer for efficient alcoholysis of furfuryl alcohol to methyl levulinate," Renewable Energy, Elsevier, vol. 229(C).
    20. Einara Blanco Machin & Daniel Travieso Pedroso & Daviel Gómez Acosta & Maria Isabel Silva dos Santos & Felipe Solferini de Carvalho & Adrian Blanco Machín & Matías Abner Neira Ortíz & Reinaldo Sánchez, 2022. "Techno-Economic and Environmental Assessment of Municipal Solid Waste Energetic Valorization," Energies, MDPI, vol. 15(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.