IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v229y2024ics0960148124008164.html
   My bibliography  Save this article

Efficient preparation of 5-hydroxymethylfurfural from cellulose via one-step combination of mechanical and chemical pre-treatment

Author

Listed:
  • Du, Ya-Peng
  • Tian, Xin-Yu
  • Zheng, Xiao-Ping
  • Chai, Yu
  • Zhang, Yu-Cang
  • Zheng, Yan-Zhen

Abstract

In this study, an innovative method for the high-efficiency production of 5-hydroxymethylfurfural (5-HMF) from cellulose were developed, overcoming the inherent recalcitrant physicochemical properties of cellulose. The method initiated with the ultra-high-pressure homogenization (UHPH) of a cellulose and formic acid mixture. This pre-treatment could highly enhance the 5-HMF yield compared with the reported pretreatment method. Following this, a catalytic system comprising a metal-based ionic liquid, 1-butyl-3-methylimidazole chloroaluminate ([BMIM][AlCl4]) and acetic acid, was utilized to transform the pre-treated cellulose into 5-HMF. Reaction parameters such as temperature, duration, DMSO concentration, cellulose substrate amount, and the balance of ILs and organic acids were optimized to obtain the highest yield of 5-HMF. Besides, a combination of experimental characterization methods with quantum chemical calculations, aiming to elucidate the pre-treatment mechanisms was conducted. The integration of formyl groups into the cellulose structure and the intense shear forces applied during UHPH were observed. These factors contributed to disrupting the cellulose's chemical stability, reducing particle size, and shifting cellulose's structure towards a blend of crystalline cellulose and amorphous forms with decreasing crystallinity. These changes collectively heightened the reactivity of cellulose for subsequent catalytic transformations, fostering more effective interactions between the catalyst and substrate and thereby elevating the efficiency of cellulose conversion to 5-HMF.

Suggested Citation

  • Du, Ya-Peng & Tian, Xin-Yu & Zheng, Xiao-Ping & Chai, Yu & Zhang, Yu-Cang & Zheng, Yan-Zhen, 2024. "Efficient preparation of 5-hydroxymethylfurfural from cellulose via one-step combination of mechanical and chemical pre-treatment," Renewable Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008164
    DOI: 10.1016/j.renene.2024.120748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ning Yan & Xi Chen, 2015. "Sustainability: Don't waste seafood waste," Nature, Nature, vol. 524(7564), pages 155-157, August.
    2. Sert, Murat & Arslanoğlu, Alparslan & Ballice, Levent, 2018. "Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents," Renewable Energy, Elsevier, vol. 118(C), pages 993-1000.
    3. Niakan, Mahsa & Masteri-Farahani, Majid & Seidi, Farzad, 2023. "Sulfonated ionic liquid immobilized SBA-16 as an active solid acid catalyst for the synthesis of biofuel precursor 5-hydroxymethylfurfural from fructose," Renewable Energy, Elsevier, vol. 212(C), pages 50-56.
    4. Zhang, Ronghua & Zhang, Wenhao & Jiang, Jianchun & Xu, Junming & Wang, Kui & Feng, Junfeng & Pan, Hui, 2024. "Catalytic valorization of biomass carbohydrates into levulinic acid/ester by using bifunctional catalysts," Renewable Energy, Elsevier, vol. 221(C).
    5. Cai, Xin & Wang, Zhichao & Ye, Yueyuan & Wang, Duo & Zhang, Zhaoxia & Zheng, Zhifeng & Liu, Yunquan & Li, Shuirong, 2021. "Conversion of chitin biomass into 5-hydroxymethylfurfural: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Agarwal, Bhumica & Kailasam, Kamalakannan & Sangwan, Rajender Singh & Elumalai, Sasikumar, 2018. "Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2408-2425.
    8. Ao, Supongsenla & Changmai, Bishwajit & Vanlalveni, Chhangte & Chhandama, Michael Van Lal & Wheatley, Andrew E.H. & Rokhum, Samuel Lalthazuala, 2024. "Biomass waste-derived catalysts for biodiesel production: Recent advances and key challenges," Renewable Energy, Elsevier, vol. 223(C).
    9. Zhao, Yuan & Lu, Kaifeng & Xu, Hao & Zhu, Lingjun & Wang, Shurong, 2021. "A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Chai, Yu & Tian, Xin-Yu & Zheng, Xiao-Ping & Du, Ya-Peng & Zhang, Yu-Cang & Zheng, Yan-Zhen, 2024. "An effective approach for chitosan conversion to 5-hydroxymethylfurfural catalyzed by bio-based organic acid with ionic liquids additive," Renewable Energy, Elsevier, vol. 221(C).
    11. Shi, Xian & Xing, Xinyi & Liu, Wanni & Ruan, Mengya & Guan, Ying & Lyu, Gaojin & Gao, Hui & Xu, Siquan, 2024. "Cellulose conversion to 5-hydroxymethylfurfural via a simple and efficient phosphate-doped hafnium oxide catalyst," Renewable Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Yu & Tian, Xin-Yu & Zheng, Xiao-Ping & Du, Ya-Peng & Zhang, Yu-Cang & Zheng, Yan-Zhen, 2024. "An effective approach for chitosan conversion to 5-hydroxymethylfurfural catalyzed by bio-based organic acid with ionic liquids additive," Renewable Energy, Elsevier, vol. 221(C).
    2. Cai, Xin & Wang, Zhichao & Ye, Yueyuan & Wang, Duo & Zhang, Zhaoxia & Zheng, Zhifeng & Liu, Yunquan & Li, Shuirong, 2021. "Conversion of chitin biomass into 5-hydroxymethylfurfural: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Vicente, Filipa A. & Hren, Robert & Novak, Uroš & Čuček, Lidija & Likozar, Blaž & Vujanović, Annamaria, 2024. "Energy demand distribution and environmental impact assessment of chitosan production from shrimp shells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    5. Wang, Zhihao & Xia, Shengpeng & Wang, Xiaobo & Fan, Yuyang & Zhao, Kun & Wang, Shuang & Zhao, Zengli & Zheng, Anqing, 2024. "Catalytic production of 5-hydroxymethylfurfural from lignocellulosic biomass: Recent advances, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    6. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    8. Dong, Shengfei & Liu, Ziyu & Yang, Xiaoyi, 2024. "Exploration of hydrothermal liquefaction of multiple algae to improve bio-crude quality and carbohydrate utilization," Applied Energy, Elsevier, vol. 361(C).
    9. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    10. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    11. Saikia, Kankana & Das, Arpita & Sema, Atoholi H. & Basumatary, Sanjay & Shaemningwar Moyon, N. & Mathimani, Thangavel & Rokhum, Samuel Lalthazuala, 2024. "Response surface optimization, kinetics, thermodynamics, and life cycle cost analysis of biodiesel production from Jatropha curcas oil using biomass-based functional activated carbon catalyst," Renewable Energy, Elsevier, vol. 229(C).
    12. Mankar, Akshay R. & Pandey, Ashish & Modak, Arindam & Pant, K.K., 2021. "Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst," Renewable Energy, Elsevier, vol. 177(C), pages 643-651.
    13. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Sher, Farooq & Smječanin, Narcisa & Khan, Muhammad Kashif & Shabbir, Imran & Ali, Salman & Hatshan, Mohammad Rafe & Ul Hai, Irfan, 2024. "Agglomeration behaviour of various biomass fuels under different air staging conditions in fluidised bed technology for renewable energy applications," Renewable Energy, Elsevier, vol. 227(C).
    15. Castro, Eulogio & Rabelo, Camila A.B. Silva & Padilla-Rascón, Carmen & Vidal, Alfonso M. & López-Linares, Juan C. & Varesche, Maria Bernadete A. & Romero, Inmaculada, 2023. "Biological hydrogen and furfural production from steam-exploded vine shoots," Renewable Energy, Elsevier, vol. 219(P1).
    16. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    17. Kirtika Kohli & Ravindra Prajapati & Brajendra K. Sharma, 2019. "Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries," Energies, MDPI, vol. 12(2), pages 1-40, January.
    18. Cai, Mengfan & An, Chunjiang & Guy, Christophe, 2021. "A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Zoran V. Simić & Mirjana Lj. Kijevčanin & Ivona R. Radović & Miha Grilc & Gorica R. Ivaniš, 2021. "Thermodynamic and Transport Properties of Biomass-Derived Furfural, Furfuryl Alcohol and Their Mixtures," Energies, MDPI, vol. 14(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.