IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp1576-1586.html
   My bibliography  Save this article

Sulfated attapulgite for catalyzing the conversion of furfuryl alcohol to ethyl levulinate: Impacts of sulfonation on structural transformation and evolution of acidic sites on the catalyst

Author

Listed:
  • Tian, Hongli
  • Shao, Yuewen
  • Liang, Chuanfei
  • Xu, Qing
  • Zhang, Lijun
  • Zhang, Shu
  • Liu, Shuhua
  • Hu, Xun

Abstract

Attapulgite (ATTP) is an abundant natural magnesium aluminosilicate mineral that can be used as support for manufacturing cost-effective solid acid catalysts. This study mainly focuses on structural change of ATTP and the formation of Brønsted and Lewis acid sites during sulfonation in H2SO4. The results indicate that the sulfonation leads to the drastic change of the crystal phases as sulfuric acid not only plays the roles of grafting the sulfur species but also reacts with the CaO, MgO, Al2O3 and Fe2O3 or their salts in ATTP to form the sulfates, resulting in the substantial change of the porous structure of ATTP. In such a process, the Brønsted acidic sites, which are the main active sites for the conversion of furfuryl alcohol (FA) to ethyl levulinate (EL), are introduced, while the abundance/strength of the Lewis acid sites are enhanced. The yield of EL up to 95.4% is achieved over the H2SO4/ATTP catalyst. The Fe2(SO4)3 and MgSO4 in the catalyst leaches in ethanol but does not affect the catalytic stability. The formed polymer also does not affect much the catalytic activity after their removal via the calcination in air.

Suggested Citation

  • Tian, Hongli & Shao, Yuewen & Liang, Chuanfei & Xu, Qing & Zhang, Lijun & Zhang, Shu & Liu, Shuhua & Hu, Xun, 2020. "Sulfated attapulgite for catalyzing the conversion of furfuryl alcohol to ethyl levulinate: Impacts of sulfonation on structural transformation and evolution of acidic sites on the catalyst," Renewable Energy, Elsevier, vol. 162(C), pages 1576-1586.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1576-1586
    DOI: 10.1016/j.renene.2020.09.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031538X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morone, Amruta & Apte, Mayura & Pandey, R.A., 2015. "Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 548-565.
    2. Li, Mengzhu & Wei, Junnan & Yan, Guihua & Liu, Huai & Tang, Xing & Sun, Yong & Zeng, Xianhai & Lei, Tingzhou & Lin, Lu, 2020. "Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 916-923.
    3. Yang, Jinfan & Ao, Zhifeng & Wu, Hao & Zhang, Sufeng & Chi, Concong & Hou, Chen & Qian, Liwei, 2020. "Waste paper-derived magnetic carbon composite: A novel eco-friendly solid acid for the synthesis of n-butyl levulinate from furfuryl alcohol," Renewable Energy, Elsevier, vol. 146(C), pages 477-483.
    4. Kumar, Vijay Bhooshan & Pulidindi, Indra Neel & Gedanken, Aharon, 2015. "Selective conversion of starch to glucose using carbon based solid acid catalyst," Renewable Energy, Elsevier, vol. 78(C), pages 141-145.
    5. Sangar, Shatesh Kumar & Syazwani, Osman Nur & Farabi, M.S. Ahmad & Razali, S.M. & Shobhana, Gnanasekhar & Teo, Siow Hwa & Taufiq-Yap, Yun Hin, 2019. "Effective biodiesel synthesis from palm fatty acid distillate (PFAD) using carbon-based solid acid catalyst derived glycerol," Renewable Energy, Elsevier, vol. 142(C), pages 658-667.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Rulu & Liu, Huai & Zhang, Junhua & Cheng, Yuan & He, Liang & Peng, Lincai, 2022. "Tea polyphenol and HfCl4 Co-doped polyacrylonitrile nanofiber for highly efficient transformation of levulinic acid to γ-valerolactone," Renewable Energy, Elsevier, vol. 200(C), pages 234-243.
    2. Shao, Yuewen & Wu, Jie & Zheng, Zhiyuan & Fan, Mengjiao & Sun, Kai & Bkangmo Kontchouo, Félix Mérimé & Zhang, Lijun & Zhang, Shu & Hu, Guangzhi & Hu, Xun, 2022. "Alloying cobalt in Co–Fe–Al catalyst for achieving the selective conversion of furfural to cyclopentanone," Renewable Energy, Elsevier, vol. 195(C), pages 957-971.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ruoqing & Shen, Feng & Tang, Yiwei & Guo, Haixin & Lee Smith, Richard & Qi, Xinhua, 2021. "Selective conversion of furfuryl alcohol to levulinic acid by SO3H-containing silica nanoflower in GVL/H2O system," Renewable Energy, Elsevier, vol. 171(C), pages 124-132.
    2. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    3. Guo, Haixin & Hirosaki, Yuta & Qi, Xinhua & Lee Smith, Richard, 2020. "Synthesis of ethyl levulinate over amino-sulfonated functional carbon materials," Renewable Energy, Elsevier, vol. 157(C), pages 951-958.
    4. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.
    5. Aisien, Felix Aibuedefe & Aisien, Eki Tina, 2023. "Modeling and optimization of transesterification of rubber seed oil using sulfonated CaO derived from giant African land snail (Achatina fulica) catalyst by response surface methodology," Renewable Energy, Elsevier, vol. 207(C), pages 137-146.
    6. Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
    7. Bangalore Ashok, Rahul Prasad & Oinas, Pekka & Forssell, Susanna, 2022. "Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from spruce," Renewable Energy, Elsevier, vol. 190(C), pages 396-407.
    8. Badgujar, Kirtikumar C. & Wilson, Lee D. & Bhanage, Bhalchandra M., 2019. "Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 266-284.
    9. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    10. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Nis, Berna & Kaya Ozsel, Burcak, 2021. "Efficient direct conversion of lignocellulosic biomass into biobased platform chemicals in ionic liquid-water medium," Renewable Energy, Elsevier, vol. 169(C), pages 1051-1057.
    12. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    13. Huang, Rulu & Liu, Huai & Zhang, Junhua & Cheng, Yuan & He, Liang & Peng, Lincai, 2022. "Tea polyphenol and HfCl4 Co-doped polyacrylonitrile nanofiber for highly efficient transformation of levulinic acid to γ-valerolactone," Renewable Energy, Elsevier, vol. 200(C), pages 234-243.
    14. Tang, Yiwei & Liu, Xiaoning & Xi, Ran & Liu, Le & Qi, Xinhua, 2022. "Catalytic one-pot conversion of biomass-derived furfural to ethyl levulinate over bifunctional Nb/Ni@OMC," Renewable Energy, Elsevier, vol. 200(C), pages 821-831.
    15. Ma, Mingwei & Hou, Pan & Zhang, Peng & Guo, Qi & Yue, Huijuan & Huang, Jiahui & Tian, Ge & Feng, Shouhua, 2024. "Tandem catalysis of furfural to γ-valerolactone over polyoxometalate-based metal-organic frameworks: Exploring the role of confinement in the catalytic process," Renewable Energy, Elsevier, vol. 227(C).
    16. Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
    17. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    18. Zhang, Qilin & Guo, Zongwei & Zeng, Xianhai & Ramarao, Bandaru & Xu, Feng, 2021. "A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations," Renewable Energy, Elsevier, vol. 179(C), pages 351-358.
    19. Maria Dyah Nur Meinita & Amron Amron & Agus Trianto & Dicky Harwanto & Wahyu Caesarendra & Gwi-Taek Jeong & Jae-Suk Choi, 2021. "Levulinic Acid Production from Macroalgae: Production and Promising Potential in Industry," Sustainability, MDPI, vol. 13(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1576-1586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.