IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120304639.html
   My bibliography  Save this article

A review on solvent systems for furfural production from lignocellulosic biomass

Author

Listed:
  • Lee, Cornelius Basil Tien Loong
  • Wu, Ta Yeong

Abstract

Utilizing biomass in biorefineries is a favorable sustainable method to produce platform chemicals, materials and energy. Conversions of lignocellulosic biomass to chemicals have greatly attracted attention recently due to its abundance in nature and high availability at low costs. The potential of lignocellulosic biomass lies in its ability to be transformed to clean energy, biochemical and industrial products. Furfural has been identified as a valuable platform chemical that can be derived from lignocellulosic biomass. Furfural could also be regarded as sustainable alternatives to petrochemical products. Currently, more than 80 furfural-derived chemicals are used in various industries. The main aim of this review was to discuss various solvent systems that emerged for furfural production from lignocellulosic biomass. Conventionally, furfural is produced by reactions in aqueous systems employing H2SO4 as the catalyst. In an effort to improve furfural production, various solvent systems started to emerge, namely organic solvent system, biphasic system, ionic liquid system, and deep eutectic solvent system. Advantages and limitations of each solvent system were discussed herein. In this review, the background of furfural and its reaction pathways were also discussed. Moreover, opportunities, challenges and limitations to advance furfural production in biorefineries were addressed in this review as well.

Suggested Citation

  • Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120304639
    DOI: 10.1016/j.rser.2020.110172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotarska, Katarzyna & Świerczyńska, Anna & Dziemianowicz, Wojciech, 2015. "Study on the decomposition of lignocellulosic biomass and subjecting it to alcoholic fermentation," Renewable Energy, Elsevier, vol. 75(C), pages 389-394.
    2. Byun, Jaewon & Han, Jeehoon, 2019. "Catalytic conversion of corn stover for 〈gamma〉-valerolactone production by two different solvent strategies: Techno-economic assessment," Energy, Elsevier, vol. 175(C), pages 546-553.
    3. Ho, Mun Chun & Ong, Victor Zhenquan & Wu, Ta Yeong, 2019. "Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 75-86.
    4. Sert, Murat & Arslanoğlu, Alparslan & Ballice, Levent, 2018. "Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents," Renewable Energy, Elsevier, vol. 118(C), pages 993-1000.
    5. Kumar, Dipesh & Singh, Bhaskar & Korstad, John, 2017. "Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 654-671.
    6. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    7. Mohammed, M.A.A. & Salmiaton, A. & Wan Azlina, W.A.K.G. & Mohammad Amran, M.S. & Fakhru'l-Razi, A. & Taufiq-Yap, Y.H., 2011. "Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1258-1270, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. New, Eng Kein & Wu, Ta Yeong & Tnah, Shen Khang & Procentese, Alessandra & Cheng, Chin Kui, 2023. "Pretreatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride," Energy, Elsevier, vol. 277(C).
    2. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Qiu, Bingbing & Shi, Jicheng & Hu, Wei & Wang, Yanfang & Zhang, Donghui & Chu, Huaqiang, 2024. "Efficient and selective conversion of xylose to furfural over carbon-based solid acid catalyst in water-γ-valerolactone," Energy, Elsevier, vol. 294(C).
    4. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Wiranarongkorn, K. & Im-orb, K. & Patcharavorachot, Y. & Maréchal, F. & Arpornwichanop, A., 2023. "Comparative techno-economic and energy analyses of integrated biorefinery processes of furfural and 5-hydroxymethylfurfural from biomass residue," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    6. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    7. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
    9. Su, Ying & Guo, Bingfeng & Hornung, Ursel & Dahmen, Nicolaus, 2022. "FeCl3-supported solvothermal liquefaction of Miscanthus in methanol," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    2. Dar, Rouf Ahmad & Tsui, To-Hung & Zhang, Le & Tong, Yen Wah & Sharon, Sigal & Shoseyov, Oded & Liu, Ronghou, 2024. "Fermentation of organic wastes through oleaginous microorganisms for lipid production - Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    3. Mohd Faizal, Hasan & Shamsuddin, Hielfarith Suffri & M. Heiree, M. Harif & Muhammad Ariff Hanaffi, Mohd Fuad & Abdul Rahman, Mohd Rosdzimin & Rahman, Md. Mizanur & Latiff, Z.A., 2018. "Torrefaction of densified mesocarp fibre and palm kernel shell," Renewable Energy, Elsevier, vol. 122(C), pages 419-428.
    4. Kamil Witaszek & Marcin Herkowiak & Agnieszka A. Pilarska & Wojciech Czekała, 2022. "Methods of Handling the Cup Plant ( Silphium perfoliatum L.) for Energy Production," Energies, MDPI, vol. 15(5), pages 1-20, March.
    5. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Mankar, Akshay R. & Pandey, Ashish & Modak, Arindam & Pant, K.K., 2021. "Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst," Renewable Energy, Elsevier, vol. 177(C), pages 643-651.
    7. Kyle McGaughy & M. Toufiq Reza, 2020. "Systems Analysis of SO 2 -CO 2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents," Energies, MDPI, vol. 13(2), pages 1-15, January.
    8. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    9. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    10. Chai, Yu & Tian, Xin-Yu & Zheng, Xiao-Ping & Du, Ya-Peng & Zhang, Yu-Cang & Zheng, Yan-Zhen, 2024. "An effective approach for chitosan conversion to 5-hydroxymethylfurfural catalyzed by bio-based organic acid with ionic liquids additive," Renewable Energy, Elsevier, vol. 221(C).
    11. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    13. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    14. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    15. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Sabil, Khalik M. & Aziz, Muafah A. & Lal, Bhajan & Uemura, Yoshimitsu, 2013. "Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement," Applied Energy, Elsevier, vol. 111(C), pages 821-826.
    17. Bangalore Ashok, Rahul Prasad & Oinas, Pekka & Forssell, Susanna, 2022. "Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from spruce," Renewable Energy, Elsevier, vol. 190(C), pages 396-407.
    18. KS Rajmohan & C Ramya & Sunita Varjani, 2021. "Trends and advances in bioenergy production and sustainable solid waste management," Energy & Environment, , vol. 32(6), pages 1059-1085, September.
    19. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    20. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120304639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.