Characterizing and using a new bi-functional catalyst to sustainably synthesize methyl levulinate from biomass carbohydrates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.05.120
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohammadbagheri, Zahra & Najafi Chermahini, Alireza, 2020. "Direct production of hexyl levulinate as a potential fuel additive from glucose catalyzed by modified dendritic fibrous nanosilica," Renewable Energy, Elsevier, vol. 147(P1), pages 2229-2237.
- Peng, Lincai & Lin, Lu & Li, Hui & Yang, Qiulin, 2011. "Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts," Applied Energy, Elsevier, vol. 88(12), pages 4590-4596.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Ronghua & Zhang, Wenhao & Jiang, Jianchun & Xu, Junming & Wang, Kui & Feng, Junfeng & Pan, Hui, 2024. "Catalytic valorization of biomass carbohydrates into levulinic acid/ester by using bifunctional catalysts," Renewable Energy, Elsevier, vol. 221(C).
- Samanta, Ritika & Chakraborty, Rajat, 2023. "Methyl levulinate synthesis from rice husk employing e-waste derived silica supported nano CuO–CdSO4 photocatalyst: Assessment of production environmental impacts, engine performance and emissions," Renewable Energy, Elsevier, vol. 210(C), pages 842-858.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Mengzhu & Wei, Junnan & Yan, Guihua & Liu, Huai & Tang, Xing & Sun, Yong & Zeng, Xianhai & Lei, Tingzhou & Lin, Lu, 2020. "Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 916-923.
- Liu, Jie & Wang, Xue-Qian & Yang, Bei-Bei & Liu, Chun-Ling & Xu, Chun-Li & Dong, Wen-Sheng, 2018. "Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite," Renewable Energy, Elsevier, vol. 120(C), pages 231-240.
- Pan, Hu & Liu, Xiaofang & Zhang, Heng & Yang, Kaili & Huang, Shan & Yang, Song, 2017. "Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion," Renewable Energy, Elsevier, vol. 107(C), pages 245-252.
- Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
- Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
- Carlo Pastore & Valeria D’Ambrosio, 2021. "Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O," Energies, MDPI, vol. 14(5), pages 1-11, February.
- Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
- Yang, Yu & Abu-Omar, Mahdi M. & Hu, Changwei, 2012. "Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate," Applied Energy, Elsevier, vol. 99(C), pages 80-84.
- Yan, Kai & Jarvis, Cody & Gu, Jing & Yan, Yong, 2015. "Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 986-997.
- Chen, Han & Xu, Qiong & Zhang, Du & Liu, Wenzhu & Liu, Xianxiang & Yin, Dulin, 2021. "Highly efficient synthesis of γ-valerolactone by catalytic conversion of biomass-derived levulinate esters over support-free mesoporous Ni," Renewable Energy, Elsevier, vol. 163(C), pages 1023-1032.
- Dookheh, Maryam & Najafi Chermahini, Alireza & Saraji, Mohammad, 2022. "Organic-inorganic bi-functionalized hybrid KIT-5: A toolbox for catalytic dehydration of xylose to n-hexyl levulinate," Renewable Energy, Elsevier, vol. 200(C), pages 527-536.
- Zhang, Ronghua & Zhang, Wenhao & Jiang, Jianchun & Xu, Junming & Wang, Kui & Feng, Junfeng & Pan, Hui, 2024. "Catalytic valorization of biomass carbohydrates into levulinic acid/ester by using bifunctional catalysts," Renewable Energy, Elsevier, vol. 221(C).
- Tang, Yiwei & Liu, Xiaoning & Xi, Ran & Liu, Le & Qi, Xinhua, 2022. "Catalytic one-pot conversion of biomass-derived furfural to ethyl levulinate over bifunctional Nb/Ni@OMC," Renewable Energy, Elsevier, vol. 200(C), pages 821-831.
- Zhao, Weijie & Li, Yingwen & Song, Changhua & Liu, Sijie & Li, Xuehui & Long, Jinxing, 2017. "Intensified levulinic acid/ester production from cassava by one-pot cascade prehydrolysis and delignification," Applied Energy, Elsevier, vol. 204(C), pages 1094-1100.
- Feng, Junfeng & Jiang, Jianchun & Xu, Junming & Yang, Zhongzhi & Wang, Kui & Guan, Qian & Chen, Shuigen, 2015. "Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass," Applied Energy, Elsevier, vol. 154(C), pages 520-527.
- Tang, Xing & Zeng, Xianhai & Li, Zheng & Hu, Lei & Sun, Yong & Liu, Shijie & Lei, Tingzhou & Lin, Lu, 2014. "Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 608-620.
- di Bitonto, Luigi & Locaputo, Vito & D'Ambrosio, Valeria & Pastore, Carlo, 2020. "Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels," Applied Energy, Elsevier, vol. 259(C).
More about this item
Keywords
Methyl levulinate; Biofuel additives; Fructose conversion; Bi-functional heterogeneous catalyst; Mathematical modeling; Brønsted/Lewis acid sites kinetic model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:176:y:2021:i:c:p:651-662. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.