Preparation of various hierarchical HZSM-5 based catalysts for in-situ fast upgrading of bio-oil
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.01.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Palizdar, A. & Sadrameli, S.M., 2020. "Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions," Renewable Energy, Elsevier, vol. 148(C), pages 674-688.
- Park, Young-Kwon & Yoo, Myung Lang & Jin, Sung Ho & Park, Sung Hoon, 2015. "Catalytic fast pyrolysis of waste pepper stems over HZSM-5," Renewable Energy, Elsevier, vol. 79(C), pages 20-27.
- Chaihad, Nichaboon & Karnjanakom, Surachai & Kurnia, Irwan & Yoshida, Akihiro & Abudula, Abuliti & Reubroycharoen, Prasert & Guan, Guoqing, 2019. "Catalytic upgrading of bio-oils over high alumina zeolites," Renewable Energy, Elsevier, vol. 136(C), pages 1304-1310.
- Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
- Chen, Guanyi & Liu, Juping & Li, Xiangping & Zhang, Jianguang & Yin, Han & Su, Zhenping, 2020. "Investigation on catalytic hydrodeoxygenation of eugenol blend with light fraction in bio-oil over Ni-based catalysts," Renewable Energy, Elsevier, vol. 157(C), pages 456-465.
- Ahmadi, Shima & Reyhanitash, Ehsan & Yuan, Zhongshun & Rohani, Sohrab & Xu, Chunbao (Charles), 2017. "Upgrading of fast pyrolysis oil via catalytic hydrodeoxygenation: Effects of type of solvents," Renewable Energy, Elsevier, vol. 114(PB), pages 376-382.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Qiaofei & Han, Qi & Bai, Hongjuan & Li, Yakun & Zhu, Chunshan & Xie, Wenlei, 2024. "Monolithic HZSM-5/SS-fiber catalysts with high coke-resistance and selectivity for catalytic cracking of castor oil to produce biofuel," Renewable Energy, Elsevier, vol. 229(C).
- Chaerusani, Virdi & Ramli, Yusrin & Zahra, Aghietyas Choirun Az & Zhang, Pan & Rizkiana, Jenny & Kongparakul, Suwadee & Samart, Chanatip & Karnjanakom, Surachai & Kang, Dong-Jin & Abudula, Abuliti & G, 2024. "In-situ catalytic upgrading of bio-oils from rapid pyrolysis of torrefied giant miscanthus (Miscanthus x giganteus) over copper‑magnesium bimetal modified HZSM-5," Applied Energy, Elsevier, vol. 353(PA).
- Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Sen & Guo, Longhui & He, Xinyu & Qiao, Congzhen & Tian, Yajie, 2022. "Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics," Renewable Energy, Elsevier, vol. 194(C), pages 89-99.
- Shu, Riyang & Jiang, Hao & Xie, Long & Liu, Xiaozhou & Yin, Tao & Tian, Zhipeng & Wang, Chao & Chen, Ying, 2023. "Efficient hydrodeoxygenation of lignin-derived phenolic compounds by using Ru-based biochar catalyst coupled with silicotungstic acid," Renewable Energy, Elsevier, vol. 202(C), pages 1160-1168.
- Huang, Yongcheng & Li, Yaoting & Han, Xudong & Zhang, Jiating & Luo, Kun & Yang, Shangsheng & Wang, Jiyuan, 2020. "Investigation on fuel properties and engine performance of the extraction phase liquid of bio-oil/biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 1990-2002.
- Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
- Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
- Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
- Omer, Ahmed & Kazmi, Wajahat Waheed & Rahimipetroudi, Iman & Syed, Muhammad Wasi & Rashid, Kashif & Yang, Je Bok & Lee, In Gu & Dong, Sang Keun, 2023. "Experimental and numerical study on the hexadecanoic acid upgrading kinetics under supercritical ethanol without the use of hydrogen," Renewable Energy, Elsevier, vol. 219(P2).
- Jahromi, Hossein & Agblevor, Foster A., 2017. "Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation," Energy, Elsevier, vol. 141(C), pages 2186-2195.
- Valentina Zubkova & Andrzej Strojwas & Marcin Bielecki, 2021. "Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves," Energies, MDPI, vol. 14(8), pages 1-18, April.
- Chaerusani, Virdi & Ramli, Yusrin & Zahra, Aghietyas Choirun Az & Zhang, Pan & Rizkiana, Jenny & Kongparakul, Suwadee & Samart, Chanatip & Karnjanakom, Surachai & Kang, Dong-Jin & Abudula, Abuliti & G, 2024. "In-situ catalytic upgrading of bio-oils from rapid pyrolysis of torrefied giant miscanthus (Miscanthus x giganteus) over copper‑magnesium bimetal modified HZSM-5," Applied Energy, Elsevier, vol. 353(PA).
- Isah Yakub Mohammed & Feroz Kabir Kazi & Suzana Yusup & Peter Adeniyi Alaba & Yahaya Muhammad Sani & Yousif Abdalla Abakr, 2016. "Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst," Energies, MDPI, vol. 9(4), pages 1-17, March.
- Ly, Hoang Vu & Park, Jeong Woo & Kim, Seung-Soo & Hwang, Hyun Tae & Kim, Jinsoo & Woo, Hee Chul, 2020. "Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil," Renewable Energy, Elsevier, vol. 149(C), pages 1434-1445.
- Tai, Lingyu & Hamidi, Roya & de Caprariis, Benedetta & Damizia, Martina & Paglia, Laura & Scarsella, Marco & Karimzadeh, Ramin & De Filippis, Paolo, 2022. "Guaiacol hydrotreating with in-situ generated hydrogen over ni/modified zeolite supports," Renewable Energy, Elsevier, vol. 182(C), pages 647-658.
- Shokrollahi, Simin & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "Efficient bioenergy recovery from different date palm industrial wastes," Energy, Elsevier, vol. 272(C).
- Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
- Djaafri, Mohammed & Drissi, Aicha & Mehdaoui, Sabrina & Kalloum, Slimane & Atelge, M.R. & Khelafi, Mostefa & Kaidi, Kamel & Salem, Fethya & Tahri, Ahmed & Atabani, A.E. & Štěpanec, Libor, 2023. "Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H'mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study," Energy, Elsevier, vol. 269(C).
- Fahad Alkoaik & Abdulelah Al-Faraj & Ibrahim Al-Helal & Ronnel Fulleros & Mansour Ibrahim & Ahmed M. Abdel-Ghany, 2019. "Toward Sustainability in Rural Areas: Composting Palm Tree Residues in Rotating Bioreactors," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
- Gollakota, Anjani R.K. & Shu, Chi-Min & Sarangi, Prakash Kumar & Shadangi, Krushna Prasad & Rakshit, Sudip & Kennedy, John F. & Gupta, Vijai Kumar & Sharma, Minaxi, 2023. "Catalytic hydrodeoxygenation of bio-oil and model compounds - Choice of catalysts, and mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Thapat Silalertruksa & Chanipa Wirodcharuskul & Shabbir H. Gheewala, 2022. "Environmental Sustainability of Waste Circulation Models for Sugarcane Biorefinery System in Thailand," Energies, MDPI, vol. 15(24), pages 1-21, December.
- Sulaiman Al Yahya & Tahir Iqbal & Muhammad Mubashar Omar & Munir Ahmad, 2021. "Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia," Energies, MDPI, vol. 14(19), pages 1-12, September.
More about this item
Keywords
Hierarchical zeolite; HZSM-5; Bio-oil upgrading; Fast pyrolysis; Aromatic hydrocarbons; Coke formation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:283-292. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.