IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p201-d301948.html
   My bibliography  Save this article

Toward Sustainability in Rural Areas: Composting Palm Tree Residues in Rotating Bioreactors

Author

Listed:
  • Fahad Alkoaik

    (Department of Agricultural Engineering, King Saud University, Riyadh 11451, Saudi Arabia)

  • Abdulelah Al-Faraj

    (Department of Agricultural Engineering, King Saud University, Riyadh 11451, Saudi Arabia)

  • Ibrahim Al-Helal

    (Department of Agricultural Engineering, King Saud University, Riyadh 11451, Saudi Arabia)

  • Ronnel Fulleros

    (Department of Agricultural Engineering, King Saud University, Riyadh 11451, Saudi Arabia)

  • Mansour Ibrahim

    (Department of Agricultural Engineering, King Saud University, Riyadh 11451, Saudi Arabia)

  • Ahmed M. Abdel-Ghany

    (Department of Agricultural Engineering, King Saud University, Riyadh 11451, Saudi Arabia)

Abstract

Huge quantities of palm tree residues are available annually in Saudi Arabia; they are often disposed of by burning, leading to large environmental pollution and health problems. Enclosed composting may be a successful method for utilizing these residues. Effective composting in a rotary bioreactor depends on the composting materials and the frequencies of the rotation–aeration process. Here, we attempted to determine the optimal method for composting these residues in a bioreactor. Four identical pilot-scale bioreactors (D1–D4) were used. The respective aeration–rotation frequencies were continuous (D1), and 20 min per 1 h (D2), 2 h (D3), and 3 h (D4); the rotation speed of the bioreactors was 3 rpm. Three periods were analyzed; their names and their respective lengths for D1, D2, D3, and D4 were as follows: the lag period was 10 h for each, the mesophilic periods were 13, 14, 89, and 231 h, and the thermophilic periods were 0, 55, 71, and 17 h. The peak compost temperatures ( T c, max ) for D1, D2, and D3 were 65.2, 57.2, and 46.9 °C, and were achieved at 36, 71, and 108 h of operation, respectively. In D1, T c quickly declined after reaching T c, max due to limited microbial activity at T c > 60 °C. In D2, a T c of 50–57.2 °C was maintained for 61 h, and the highest organic matter degradation (OMD) of 0.30 was achieved. During the composting period, the carbon to nitrogen ( C/N ) ratio and moisture contents ( MC ) remained in the optimal ranges for microorganisms and did not affect the composting process. The results indicated that combined aeration–rotation for 20 min every hour (D2) gave the best results for composting palm tree residues, it ensured the hygiene safety of the end product, and it also consumed less power for aeration and rotation than D1.

Suggested Citation

  • Fahad Alkoaik & Abdulelah Al-Faraj & Ibrahim Al-Helal & Ronnel Fulleros & Mansour Ibrahim & Ahmed M. Abdel-Ghany, 2019. "Toward Sustainability in Rural Areas: Composting Palm Tree Residues in Rotating Bioreactors," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:201-:d:301948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramadan A. Nasser & Mohamed Z. M. Salem & Salim Hiziroglu & Hamad A. Al-Mefarrej & Ahmed S. Mohareb & Manawwer Alam & Ibrahim M. Aref, 2016. "Chemical Analysis of Different Parts of Date Palm ( Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production," Energies, MDPI, vol. 9(5), pages 1-14, May.
    2. Fahad N. Alkoaik & Ahmed M. Abdel-Ghany & Mohamed A. Rashwan & Ronnel B. Fulleros & Mansour N. Ibrahim, 2018. "Energy Analysis of a Rotary Drum Bioreactor for Composting Tomato Plant Residues," Energies, MDPI, vol. 11(2), pages 1-14, February.
    3. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Abdel-Ghany & Ibrahim M. Al-Helal & Abdullah Alsadon & Abdullah Ibrahim & Mohamed Shady, 2022. "Measuring and Predicting the In-Ground Temperature Profile for Geothermal Energy Systems in the Desert of Arid Regions," Energies, MDPI, vol. 15(19), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shokrollahi, Simin & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "Efficient bioenergy recovery from different date palm industrial wastes," Energy, Elsevier, vol. 272(C).
    2. Thapat Silalertruksa & Chanipa Wirodcharuskul & Shabbir H. Gheewala, 2022. "Environmental Sustainability of Waste Circulation Models for Sugarcane Biorefinery System in Thailand," Energies, MDPI, vol. 15(24), pages 1-21, December.
    3. Tom Haeldermans & Jeamichel Puente Torres & Willem Vercruysse & Robert Carleer & Pieter Samyn & Dries Vandamme & Jan Yperman & Ann Cuypers & Kenny Vanreppelen & Sonja Schreurs, 2023. "An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs," Waste, MDPI, vol. 1(1), pages 1-19, January.
    4. Sulaiman Al Yahya & Tahir Iqbal & Muhammad Mubashar Omar & Munir Ahmad, 2021. "Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia," Energies, MDPI, vol. 14(19), pages 1-12, September.
    5. Kardaś, Dariusz & Hercel, Paulina & Polesek-Karczewska, Sylwia & Wardach-Świȩcicka, Izabela, 2019. "A novel insight into biomass pyrolysis – The process analysis by identifying timescales of heat diffusion, heating rate and reaction rate," Energy, Elsevier, vol. 189(C).
    6. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    7. Valentina Zubkova & Andrzej Strojwas & Marcin Bielecki, 2021. "Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves," Energies, MDPI, vol. 14(8), pages 1-18, April.
    8. Chaihad, Nichaboon & Situmorang, Yohanes Andre & Anniwaer, Aisikaer & Kurnia, Irwan & Karnjanakom, Surachai & Kasai, Yutaka & Abudula, Abuliti & Reubroycharoen, Prasert & Guan, Guoqing, 2021. "Preparation of various hierarchical HZSM-5 based catalysts for in-situ fast upgrading of bio-oil," Renewable Energy, Elsevier, vol. 169(C), pages 283-292.
    9. Fahad N. Alkoaik & Ahmed M. Abdel-Ghany & Ibrahim M. Al-Helal & Mohamed A. Rashwan & Ronnel B. Fulleros & Mansour N. Ibrahim, 2019. "Effect of Insulation on the Performance of a Rotary Bioreactor for Composting Agricultural Residues," Energies, MDPI, vol. 12(2), pages 1-13, January.
    10. Kailin Ren & Lide Su & Yong Zhang & Xiang He & Xuyang Cai, 2023. "Optimization and Experiment of Livestock and Poultry Manure Composting Equipment with Vented Heating," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    11. Elnajjar, E. & Al-Zuhair, S. & Hasan, S. & Almardeai, S. & Al Omari, S.A.B. & Hilal-Alnaqbi, A., 2020. "Morphology characterization and chemical composition of United Arab Emirates date seeds and their potential for energy production," Energy, Elsevier, vol. 213(C).
    12. Remston Martis & Amani Al-Othman & Muhammad Tawalbeh & Malek Alkasrawi, 2020. "Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation," Energies, MDPI, vol. 13(22), pages 1-34, November.
    13. Saviour A. Umoren & Moses M. Solomon & Ime B. Obot & Rami K. Suleiman, 2021. "Effect of Intensifier Additives on the Performance of Butanolic Extract of Date Palm Leaves against the Corrosion of API 5L X60 Carbon Steel in 15 wt.% HCl Solution," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    14. Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
    15. Djaafri, Mohammed & Drissi, Aicha & Mehdaoui, Sabrina & Kalloum, Slimane & Atelge, M.R. & Khelafi, Mostefa & Kaidi, Kamel & Salem, Fethya & Tahri, Ahmed & Atabani, A.E. & Štěpanec, Libor, 2023. "Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H'mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study," Energy, Elsevier, vol. 269(C).
    16. Musa Adamu & Fayez Alanazi & Yasser E. Ibrahim & Hani Alanazi & Veerendrakumar C. Khed, 2022. "A Comprehensive Review on Sustainable Natural Fiber in Cementitious Composites: The Date Palm Fiber Case," Sustainability, MDPI, vol. 14(11), pages 1-31, May.
    17. Emmanuel Galiwango & Ali H. Al-Marzuoqi & Abbas A. Khaleel & Mahdi M. Abu-Omar, 2020. "Investigation of Non-Isothermal Kinetics and Thermodynamic Parameters for the Pyrolysis of Different Date Palm Parts," Energies, MDPI, vol. 13(24), pages 1-19, December.
    18. Foster, William & Azimov, Ulugbek & Gauthier-Maradei, Paola & Molano, Liliana Castro & Combrinck, Madeleine & Munoz, Jose & Esteves, Jaime Jaimes & Patino, Luis, 2021. "Waste-to-energy conversion technologies in the UK: Processes and barriers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:201-:d:301948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.