IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2091-d532879.html
   My bibliography  Save this article

Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves

Author

Listed:
  • Valentina Zubkova

    (The Institute of Chemistry, Jan Kochanowski University, Uniwersytecka Str. 7, 25-369 Kielce, Poland)

  • Andrzej Strojwas

    (The Institute of Chemistry, Jan Kochanowski University, Uniwersytecka Str. 7, 25-369 Kielce, Poland)

  • Marcin Bielecki

    (The Institute of Chemistry, Jan Kochanowski University, Uniwersytecka Str. 7, 25-369 Kielce, Poland)

Abstract

A research study was conducted on the thermal behaviour of leaves of urban greenery (birch, maple, and rowan) and the products of their pyrolysis and extraction as assisted by microwaves. The obtained products of pyrolysis and extraction were investigated with the use of FT-IR and UV spectroscopies and XRD techniques. A contractive analysis of samples of chars, condensates, after-extraction residue, and extracts showed that the changes in structural-chemical parameters of leaves of different types of trees during pyrolysis and extraction take place in distinct ways. About 22% of material was removed from birch leaves during extraction, and more than 17% of material was extracted from maple and rowan leaves. It was determined that, during pyrolysis of after-extraction residue of leaves, many fewer PAH compounds with carbonyl groups along with alcohols and phenols are emitted than during pyrolysis of non-extracted leaves. Taking into account that pyrolysis is the first stage of combustion, a decrease in the amount of dangerous compounds in the volatile products of pyrolysis leads to a lower contribution of such compounds in combustion products. This indicates that leaves of urban greenery can be subjected to combustion after extraction, and the obtained extracts can be used as a source of phytochemicals and chemical reagents.

Suggested Citation

  • Valentina Zubkova & Andrzej Strojwas & Marcin Bielecki, 2021. "Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves," Energies, MDPI, vol. 14(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2091-:d:532879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Araceli Regueiro & Lucie Jezerská & Raquel Pérez-Orozco & David Patiño & Jiří Zegzulka & Jan Nečas, 2019. "Viability Evaluation of Three Grass Biofuels: Experimental Study in a Small-Scale Combustor," Energies, MDPI, vol. 12(7), pages 1-19, April.
    2. Teresa Enes & José Aranha & Teresa Fonseca & Domingos Lopes & Ana Alves & José Lousada, 2019. "Thermal Properties of Residual Agroforestry Biomass of Northern Portugal," Energies, MDPI, vol. 12(8), pages 1-13, April.
    3. Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
    4. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    5. Amani Taamalli & Jesus Lozano Sánchez & Haifa Jebabli & Najla Trabelsi & Leila Abaza & Antonio Segura Carretero & Jae Youl Cho & David Arráez Román, 2019. "Monitoring the Bioactive Compounds Status in Olea europaea According to Collecting Period and Drying Conditions," Energies, MDPI, vol. 12(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biagio Morrone, 2022. "Residual Biomass Conversion to Bioenergy," Energies, MDPI, vol. 15(16), pages 1-3, August.
    2. Marcin Bielecki & Valentina Zubkova & Andrzej Strojwas, 2022. "Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products," Energies, MDPI, vol. 15(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    2. Elena Butnaru & Mihai Brebu, 2022. "The Thermochemical Conversion of Forestry Residues from Silver Fir ( Abies alba Mill.) by Torrefaction and Pyrolysis," Energies, MDPI, vol. 15(10), pages 1-20, May.
    3. Chaihad, Nichaboon & Situmorang, Yohanes Andre & Anniwaer, Aisikaer & Kurnia, Irwan & Karnjanakom, Surachai & Kasai, Yutaka & Abudula, Abuliti & Reubroycharoen, Prasert & Guan, Guoqing, 2021. "Preparation of various hierarchical HZSM-5 based catalysts for in-situ fast upgrading of bio-oil," Renewable Energy, Elsevier, vol. 169(C), pages 283-292.
    4. Lelis Gonzaga Fraga & João Silva & Senhorinha Teixeira & Delfim Soares & Manuel Ferreira & José Teixeira, 2020. "Influence of Operating Conditions on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysis," Energies, MDPI, vol. 13(11), pages 1-22, June.
    5. Leonel J. R. Nunes, 2020. "Torrefied Biomass as an Alternative in Coal-Fueled Power Plants: A Case Study on Grindability of Agroforestry Waste Forms," Clean Technol., MDPI, vol. 2(3), pages 1-20, July.
    6. Chen, Qianyang & Qiu, Qianyuan & Yan, Xiaomin & Zhou, Mingyang & Zhang, Yapeng & Liu, Zhijun & Cai, Weizi & Wang, Wei & Liu, Jiang, 2020. "A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application," Applied Energy, Elsevier, vol. 278(C).
    7. Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
    8. Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
    9. Mushtaq, Usman & Mehran, Muhammad Taqi & Kim, Sun-Kyoung & Lim, Tak-Hyoung & Naqvi, Syed Asad Ali & Lee, Jong-Won & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun, 2017. "Evaluation of steady-state characteristics for solid oxide carbon fuel cell short-stacks," Applied Energy, Elsevier, vol. 187(C), pages 886-898.
    10. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. David Muñoz-Rodríguez & Pilar Aparicio-Martínez & Alberto-Jesus Perea-Moreno, 2022. "Contribution of Agroforestry Biomass Valorisation to Energy and Environmental Sustainability," Energies, MDPI, vol. 15(22), pages 1-7, November.
    12. Mariusz Jerzy Stolarski & Paweł Dudziec & Ewelina Olba-Zięty & Paweł Stachowicz & Michał Krzyżaniak, 2022. "Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ," Energies, MDPI, vol. 15(4), pages 1-60, February.
    13. Shokrollahi, Simin & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "Efficient bioenergy recovery from different date palm industrial wastes," Energy, Elsevier, vol. 272(C).
    14. Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
    15. Juan Jesús Rico & Raquel Pérez-Orozco & Natalia Cid & Ana Larrañaga & José Luis Míguez Tabarés, 2020. "Viability of Agricultural and Forestry Residues as Biomass Fuels in the Galicia-North Portugal Region: An Experimental Study," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    16. Djaafri, Mohammed & Drissi, Aicha & Mehdaoui, Sabrina & Kalloum, Slimane & Atelge, M.R. & Khelafi, Mostefa & Kaidi, Kamel & Salem, Fethya & Tahri, Ahmed & Atabani, A.E. & Štěpanec, Libor, 2023. "Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H'mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study," Energy, Elsevier, vol. 269(C).
    17. Fahad Alkoaik & Abdulelah Al-Faraj & Ibrahim Al-Helal & Ronnel Fulleros & Mansour Ibrahim & Ahmed M. Abdel-Ghany, 2019. "Toward Sustainability in Rural Areas: Composting Palm Tree Residues in Rotating Bioreactors," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    18. Li, Bangxin & Irvine, John T.S. & Ni, Jiupai & Ni, Chengsheng, 2022. "High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode," Applied Energy, Elsevier, vol. 306(PB).
    19. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Wu, Hao & Xiao, Jie & Zeng, Xiaoyuan & Li, Xue & Yang, Jing & Zou, Yuling & Liu, Sudongfang & Dong, Peng & Zhang, Yingjie & Liu, Jiang, 2019. "A high performance direct carbon solid oxide fuel cell – A green pathway for brown coal utilization," Applied Energy, Elsevier, vol. 248(C), pages 679-687.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2091-:d:532879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.