IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp647-658.html
   My bibliography  Save this article

Guaiacol hydrotreating with in-situ generated hydrogen over ni/modified zeolite supports

Author

Listed:
  • Tai, Lingyu
  • Hamidi, Roya
  • de Caprariis, Benedetta
  • Damizia, Martina
  • Paglia, Laura
  • Scarsella, Marco
  • Karimzadeh, Ramin
  • De Filippis, Paolo

Abstract

Catalytic hydrotreating of guaiacol as a model compound was investigated using bifunctional catalysts constituted of Ni supported on chemically modified zeolites with increased mesoporosity. In the reaction conditions, the hydrogen required for the process was generated in situ by the Zn–H2O redox system, which represents a promising green alternative to the use of gaseous hydrogen. The guaiacol hydrotreating conversion using as support zeolites with increased mesoporosity, is largely higher than that obtained with the original ones. The introduction of mesopores through desilication treatment with NaOH and TBAOH significantly increased the mass transfer of guaiacol and improved the accessibility of the active sites, accordingly enhancing the catalytic performance. The alkaline treatment notably increased the mesopore volume of Ni/HZSM-5 and Ni/HBeta by 5.6 and 3.8 times, respectively. Ni supported on desilicated HBeta zeolite displayed high hydrodeoxygenation and hydrodearomatization efficiencies with values of 69.37% and 62.82%, respectively. The reusability of this catalyst was investigated, showing a decrease in the performance after three consecutive runs due to the oxidation of Ni active site, coking and zinc oxide contamination. The main of guaiacol conversion products are cyclohexane, cyclohexanone, cyclohexanol, benzene and phenol. A reaction pathway of guaiacol hydrotreating using Ni-zeolites catalysts is proposed.

Suggested Citation

  • Tai, Lingyu & Hamidi, Roya & de Caprariis, Benedetta & Damizia, Martina & Paglia, Laura & Scarsella, Marco & Karimzadeh, Ramin & De Filippis, Paolo, 2022. "Guaiacol hydrotreating with in-situ generated hydrogen over ni/modified zeolite supports," Renewable Energy, Elsevier, vol. 182(C), pages 647-658.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:647-658
    DOI: 10.1016/j.renene.2021.10.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiangping & Chen, Lei & Chen, Guanyi & Zhang, Jianguang & Liu, Juping, 2020. "The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation," Renewable Energy, Elsevier, vol. 149(C), pages 609-616.
    2. Fan, Xu-dong & Wu, Yu-jian & Tu, Ren & Sun, Yan & Jiang, En-chen & Xu, Xi-wei, 2020. "Hydrodeoxygenation of guaiacol via rice husk char supported Ni based catalysts: The influence of char supports," Renewable Energy, Elsevier, vol. 157(C), pages 1035-1045.
    3. Fan, Xu-dong & Wu, Yu-jian & Li, Zhi-yu & Sun, Yan & Tu, Ren & Zhong, Pei-Dong & Jiang, En-chen & Xu, Xi-wei, 2020. "Benzene, toluene and xylene (BTX) from in-situ gas phase hydrodeoxygenation of guaiacol with liquid hydrogen donor over bifunctional non-noble-metal zeolite catalysts," Renewable Energy, Elsevier, vol. 152(C), pages 1391-1402.
    4. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    5. Wu, Yujian & Xu, Xiwei & Sun, Yan & Jiang, Enchen & Fan, Xudong & Tu, Ren & Wang, Jiamin, 2020. "Gas-phase hydrodeoxygenation of guaiacol over Ni-based HUSY zeolite catalysts under atmospheric H2 pressure," Renewable Energy, Elsevier, vol. 152(C), pages 1380-1390.
    6. Tran, Quoc Khanh & Ly, Hoang Vu & Kwon, Byeongwan & Kim, Seung-Soo & Kim, Jinsoo, 2021. "Catalytic hydrodeoxygenation of guaiacol as a model compound of woody bio-oil over Fe/AC and Ni/γ-Al2O3 catalysts," Renewable Energy, Elsevier, vol. 173(C), pages 886-895.
    7. Chen, Guanyi & Liu, Juping & Li, Xiangping & Zhang, Jianguang & Yin, Han & Su, Zhenping, 2020. "Investigation on catalytic hydrodeoxygenation of eugenol blend with light fraction in bio-oil over Ni-based catalysts," Renewable Energy, Elsevier, vol. 157(C), pages 456-465.
    8. Kumar, Adarsh & Kumar, Avnish & Biswas, Bijoy & Kumar, Jitendra & Yenumala, Sudhakara Reddy & Bhaskar, Thallada, 2020. "Hydrodeoxygenation of m-Cresol over Ru based catalysts: Influence of catalyst support on m-Cresol conversion and methylcyclohexane selectivity," Renewable Energy, Elsevier, vol. 151(C), pages 687-697.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gollakota, Anjani R.K. & Shu, Chi-Min & Sarangi, Prakash Kumar & Shadangi, Krushna Prasad & Rakshit, Sudip & Kennedy, John F. & Gupta, Vijai Kumar & Sharma, Minaxi, 2023. "Catalytic hydrodeoxygenation of bio-oil and model compounds - Choice of catalysts, and mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Fan, Xudong & Wu, Yujian & Sun, Yan & Tu, Ren & Ren, Zhipeng & Liang, Kaili & Jiang, Enchen & Ren, Yongzhi & Xu, Xiwei, 2022. "Functional groups anchoring-induced Ni/MoOx-Ov interface on rice husk char for hydrodeoxygenation of bio-guaiacol to BTX at ambient-pressure," Renewable Energy, Elsevier, vol. 200(C), pages 579-591.
    3. Li, Sen & Guo, Longhui & He, Xinyu & Qiao, Congzhen & Tian, Yajie, 2022. "Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics," Renewable Energy, Elsevier, vol. 194(C), pages 89-99.
    4. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    5. Gao, Xueying & Li, Helong & Wang, Shuizhong & Liu, Zhenzhen & Ma, Jian-feng & Liu, Xing-e & Song, Guoyong, 2022. "Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 724-733.
    6. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    7. Kim, D. & Hadigheh, S.A., 2024. "Oxidative pyrolysis of biosolid: Air concentration effects on biochar formation and kinetics," Renewable Energy, Elsevier, vol. 224(C).
    8. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    9. Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Chaihad, Nichaboon & Situmorang, Yohanes Andre & Anniwaer, Aisikaer & Kurnia, Irwan & Karnjanakom, Surachai & Kasai, Yutaka & Abudula, Abuliti & Reubroycharoen, Prasert & Guan, Guoqing, 2021. "Preparation of various hierarchical HZSM-5 based catalysts for in-situ fast upgrading of bio-oil," Renewable Energy, Elsevier, vol. 169(C), pages 283-292.
    11. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    12. Fan, Xu-dong & Wu, Yu-jian & Tu, Ren & Sun, Yan & Jiang, En-chen & Xu, Xi-wei, 2020. "Hydrodeoxygenation of guaiacol via rice husk char supported Ni based catalysts: The influence of char supports," Renewable Energy, Elsevier, vol. 157(C), pages 1035-1045.
    13. Toscano Miranda, Nahieh & Lopes Motta, Ingrid & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2021. "Sugarcane bagasse pyrolysis: A review of operating conditions and products properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Xu, Shannan & Hu, Yamin & Wang, Shuang & He, Zhixia & Qian, Lili & Feng, Yongqiang & Sun, Chaoqun & Liu, Xinlin & Wang, Qian & Hui, Chiwai & Payne, Emmanuel Kobina, 2019. "Investigation on the co-pyrolysis mechanism of seaweed and rice husk with multi-method comprehensive study," Renewable Energy, Elsevier, vol. 132(C), pages 266-277.
    15. Jeguirim, Mejdi & Goddard, Mary-Lorène & Tamosiunas, Andrius & Berrich-Betouche, Emna & Azzaz, Ahmed Amine & Praspaliauskas, Marius & Jellali, Salah, 2020. "Olive mill wastewater: From a pollutant to green fuels, agricultural water source and bio-fertilizer. Biofuel production," Renewable Energy, Elsevier, vol. 149(C), pages 716-724.
    16. Palizdar, A. & Sadrameli, S.M., 2020. "Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions," Renewable Energy, Elsevier, vol. 148(C), pages 674-688.
    17. Jiang, Jingyun & Ding, Wentao & Li, Hao, 2021. "Promotional effect of F for Pd/HZSM-5 catalyst on selective HDO of biobased ketones," Renewable Energy, Elsevier, vol. 179(C), pages 1262-1270.
    18. Wang, Jia & Jiang, Jianchun & Zhang, Yiyun & Meng, Xianzhi & Ragauskas, Arthur J., 2023. "Upcycling disposable face masks into fuel range iso-alkanes through hydropyrolysis coupled with vapor-phase hydrocracking," Energy, Elsevier, vol. 263(PB).
    19. Shu, Riyang & Jiang, Hao & Xie, Long & Liu, Xiaozhou & Yin, Tao & Tian, Zhipeng & Wang, Chao & Chen, Ying, 2023. "Efficient hydrodeoxygenation of lignin-derived phenolic compounds by using Ru-based biochar catalyst coupled with silicotungstic acid," Renewable Energy, Elsevier, vol. 202(C), pages 1160-1168.
    20. Tran, Quoc Khanh & Ly, Hoang Vu & Kwon, Byeongwan & Kim, Seung-Soo & Kim, Jinsoo, 2021. "Catalytic hydrodeoxygenation of guaiacol as a model compound of woody bio-oil over Fe/AC and Ni/γ-Al2O3 catalysts," Renewable Energy, Elsevier, vol. 173(C), pages 886-895.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:647-658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.