IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1053-1067.html
   My bibliography  Save this article

Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane

Author

Listed:
  • Jalali, Ramin
  • Rezaei, Mehran
  • Nematollahi, Behzad
  • Baghalha, Morteza

Abstract

In this paper, a comprehensive study was conducted on the application of various MeAl2O4 spinels (Me = Fe, Co, Ni, Cu, Zn, Mg) as the catalyst support for the preparation of nickel-based catalysts in the combined dry reforming and partial oxidation. These supports were synthesized by a novel facile sol-gel method using propylene oxide as the gelation agent and nickel was deposited on these supports by the deposition-precipitation method. The prepared samples were characterized by N2 adsorption/desorption, XRD, TPR, TPO, CO2-TPD, SEM, and TEM techniques. In addition, the temperature-programmed methane dissociation (TPMD) was performed to evaluate the effect of nickel-support interaction on the methane dissociation. These characterization results indicated that among the prepared catalyst supports, NiAl2O4 possessed the highest surface area (248 m2/g). The use of this support reduces the active metal size and increases its interaction with the catalyst support, which consequently reduces the amount of deposited carbon on the catalyst surface. The catalytic performance results demonstrated that the nickel catalyst supported on NiAl2O4 showed a 2% increase in activity during the stability reaction, which was due to the reduction of NiAl2O4 spinel during the reaction at high temperature.

Suggested Citation

  • Jalali, Ramin & Rezaei, Mehran & Nematollahi, Behzad & Baghalha, Morteza, 2020. "Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane," Renewable Energy, Elsevier, vol. 149(C), pages 1053-1067.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1053-1067
    DOI: 10.1016/j.renene.2019.10.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
    2. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    3. Roh, Hyun-Seog & Eum, Ic-Hwan & Jeong, Dae-Woon, 2012. "Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions," Renewable Energy, Elsevier, vol. 42(C), pages 212-216.
    4. Yang, Xia, 2017. "An experimental investigation on the deactivation and regeneration of a steam reforming catalyst," Renewable Energy, Elsevier, vol. 112(C), pages 17-24.
    5. Ma, Yuyao & Ma, Yuxia & Zhao, Zhibo & Hu, Xun & Ye, Zhengmao & Yao, Jianfeng & Buckley, C.E. & Dong, Dehua, 2019. "Comparison of fibrous catalysts and monolithic catalysts for catalytic methane partial oxidation," Renewable Energy, Elsevier, vol. 138(C), pages 1010-1017.
    6. Chen, Wei-Hsin & Lin, Shih-Cheng, 2016. "Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery," Applied Energy, Elsevier, vol. 162(C), pages 1141-1152.
    7. Choudhary, Vasant R. & Mondal, Kartick C., 2006. "CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst," Applied Energy, Elsevier, vol. 83(9), pages 1024-1032, September.
    8. Papurello, Davide & Chiodo, Vitaliano & Maisano, Susanna & Lanzini, Andrea & Santarelli, Massimo, 2018. "Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds," Renewable Energy, Elsevier, vol. 127(C), pages 481-494.
    9. Kim, S.C. & Chun, Y.N., 2008. "Production of hydrogen by partial oxidation with thermal plasma," Renewable Energy, Elsevier, vol. 33(7), pages 1564-1569.
    10. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    11. Dega, Frank Blondel & Chamoumi, Mostafa & Braidy, Nadi & Abatzoglou, Nicolas, 2019. "Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue," Renewable Energy, Elsevier, vol. 138(C), pages 1239-1249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.
    2. Bian, Zhoufeng & Deng, Shaobi & Sun, Zhenkun & Ge, Tianshu & Jiang, Bo & Zhong, Wenqi, 2022. "Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane," Renewable Energy, Elsevier, vol. 200(C), pages 1362-1370.
    3. Galina Xanthopoulou & Savvas Varitis & Manapkhan Zhumabek & Konstantinos Karanasios & George Vekinis & Svetlana A. Tungatarova & Tolkyn S. Baizhumanova, 2021. "Direct Reduction in Greenhouse Gases by Continuous Dry (CO 2 ) Reforming of Methane over Ni-Containing SHS Catalysts," Energies, MDPI, vol. 14(19), pages 1-13, September.
    4. Guo, Qunwei & Geng, Jiaqi & Pan, Jiawen & Chi, Bo & Xiong, Chunyan & Pu, Jian, 2023. "A-site deficient La1-xCr0.95Ru0.05O3-δ perovskites for N-hexadecane steam reforming: Effect of steam activation and active oxygen," Renewable Energy, Elsevier, vol. 219(P2).
    5. Ahmed Abasaeed & Samsudeen Kasim & Wasim Khan & Mahmud Sofiu & Ahmed Ibrahim & Anis Fakeeha & Ahmed Al-Fatesh, 2021. "Hydrogen Yield from CO 2 Reforming of Methane: Impact of La 2 O 3 Doping on Supported Ni Catalysts," Energies, MDPI, vol. 14(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bian, Zhoufeng & Deng, Shaobi & Sun, Zhenkun & Ge, Tianshu & Jiang, Bo & Zhong, Wenqi, 2022. "Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane," Renewable Energy, Elsevier, vol. 200(C), pages 1362-1370.
    2. Siang, T.J. & Jalil, A.A. & Abdulrasheed, A.A. & Hambali, H.U. & Nabgan, Walid, 2020. "Thermodynamic equilibrium study of altering methane partial oxidation for Fischer–Tropsch synfuel production," Energy, Elsevier, vol. 198(C).
    3. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    4. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Chen, Xuejing & Jiang, Jianguo & Li, Kaimin & Tian, Sicong & Yan, Feng, 2017. "Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2," Applied Energy, Elsevier, vol. 185(P1), pages 687-697.
    6. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    7. Parente, Marcelo & Soria, M.A. & Madeira, Luis M., 2020. "Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study," Renewable Energy, Elsevier, vol. 157(C), pages 1254-1264.
    8. Luu, Minh Tri & Milani, Dia & Sharma, Manish & Zeaiter, Joseph & Abbas, Ali, 2016. "Model-based analysis of CO2 revalorization for di-methyl ether synthesis driven by solar catalytic reforming," Applied Energy, Elsevier, vol. 177(C), pages 863-878.
    9. Gu, Rong & Ding, Jing & Wang, Yarong & Yuan, Qinquan & Wang, Weilong & Lu, Jianfeng, 2019. "Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator," Applied Energy, Elsevier, vol. 233, pages 789-801.
    10. Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
    11. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    12. Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
    13. Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
    14. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    15. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Han, Won-Bi & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases," Renewable Energy, Elsevier, vol. 79(C), pages 91-95.
    16. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    17. LeValley, Trevor L. & Richard, Anthony R. & Fan, Maohong, 2015. "Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift," Energy, Elsevier, vol. 90(P1), pages 748-758.
    18. Chen, Wei-Hsin & Lin, Shih-Cheng, 2015. "Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation," Energy, Elsevier, vol. 82(C), pages 206-217.
    19. Yu, Tao & Yuan, Qinyuan & Lu, Jianfeng & Ding, Jing & Lu, Yanling, 2017. "Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system," Applied Energy, Elsevier, vol. 185(P2), pages 1994-2004.
    20. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1053-1067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.