IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip2p1994-2004.html
   My bibliography  Save this article

Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system

Author

Listed:
  • Yu, Tao
  • Yuan, Qinyuan
  • Lu, Jianfeng
  • Ding, Jing
  • Lu, Yanling

Abstract

Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactor heated by a solar dish system have been experimentally and numerically investigated. The methane conversion and thermochemical storage efficiency of methane reforming process in tubular reactor were experimentally studied for inlet flow rate 3–6L/min and direct normal irradiation (DNI) 677.8–714.3W/m2. According to the experimental system and results, Gaussian distribution model is derived for concentrated solar energy flux from solar dish, and a 3D finite volume method coupled with volumetric reaction kinetics and unilateral concentrated solar energy flux is established by experimental verification. The simulated methane conversion and energy storage efficiency have good agreements with the experimental data, and the temperature and species concentration distributions of the reactor are also successfully predicted. In the middle region of reactor, the concentrated solar energy flux and heat loss reach maxima, while the net heat flux and reaction kinetic rate reach maxima in the front region because of high temperature and high reactant fraction. As the catalyst bed length increases, the residence time and reverse reaction rate both rise, so there exists a proper catalyst bed length. When DNI rises, the methane reforming is promoted, while the heat loss remarkably increases, which results in the maximum thermochemical storage efficiency under proper DNI. Structural and operating parameters for the present tubular reactor can be further optimized, and the proper catalyst bed length is 300mm, while the proper DNI is 250–300W/m2 (focal energy flux of 244.3–293.2kW/m2). A semi-cavity reactor is designed to reduce the heat loss and enhance the energy storage performance. According to the experimental results under inlet flow rate 2–6L/min and DNI 452.4–598.5W/m2, the methane conversion of semi-cavity reactor can be increased to 74.8%, and the thermochemical storage efficiency and total energy efficiency can be respectively increased to 19.7% and 28.9%.

Suggested Citation

  • Yu, Tao & Yuan, Qinyuan & Lu, Jianfeng & Ding, Jing & Lu, Yanling, 2017. "Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system," Applied Energy, Elsevier, vol. 185(P2), pages 1994-2004.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1994-2004
    DOI: 10.1016/j.apenergy.2015.10.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915013732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Lin, Shih-Cheng, 2016. "Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery," Applied Energy, Elsevier, vol. 162(C), pages 1141-1152.
    2. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
    3. Pardo, P. & Deydier, A. & Anxionnaz-Minvielle, Z. & Rougé, S. & Cabassud, M. & Cognet, P., 2014. "A review on high temperature thermochemical heat energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 591-610.
    4. Lu, Jianfeng & Chen, Yuan & Ding, Jing & Wang, Weilong, 2016. "High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor," Applied Energy, Elsevier, vol. 162(C), pages 1473-1482.
    5. Hong, Hui & Liu, Qibin & Jin, Hongguang, 2012. "Operational performance of the development of a 15kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production," Applied Energy, Elsevier, vol. 90(1), pages 137-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanusi, Yinka S. & Mokheimer, Esmail M.A. & Habib, Mohamed A., 2017. "Thermo-economic analysis of integrated membrane-SMR ITM-oxy-combustion hydrogen and power production plant," Applied Energy, Elsevier, vol. 204(C), pages 626-640.
    2. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Liu, Taixiu & Bai, Zhang & Zheng, Zhimei & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2019. "100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Wang, Fuqiang & Shi, Xuhang & Zhang, Chuanxin & Cheng, Ziming & Chen, Xue, 2020. "Effects of non-uniform porosity on thermochemical performance of solar driven methane reforming," Energy, Elsevier, vol. 191(C).
    5. Jin, Jian & Wang, Hongsheng & Shen, Yili & Shu, Ziyun & Liu, Taixiu & Li, Wenjia, 2023. "Thermodynamic analysis of methane to methanol through a two-step process driven by concentrated solar energy," Energy, Elsevier, vol. 273(C).
    6. Cao, Pengfei & Adegbite, Stephen & Zhao, Haitao & Lester, Edward & Wu, Tao, 2018. "Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach," Applied Energy, Elsevier, vol. 227(C), pages 190-197.
    7. Gu, Rong & Ding, Jing & Wang, Yarong & Yuan, Qinquan & Wang, Weilong & Lu, Jianfeng, 2019. "Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator," Applied Energy, Elsevier, vol. 233, pages 789-801.
    8. Abedini Najafabadi, Hamed & Ozalp, Nesrin, 2018. "An advanced modeling and experimental study to improve temperature uniformity of a solar receiver," Energy, Elsevier, vol. 165(PB), pages 984-998.
    9. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.
    10. Jianfeng Lu & Yarong Wang & Jing Ding, 2020. "Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver," Energies, MDPI, vol. 13(4), pages 1-19, February.
    11. von Storch, Henrik & Roeb, Martin & Stadler, Hannes & Sattler, Christian & Bardow, André & Hoffschmidt, Bernhard, 2016. "On the assessment of renewable industrial processes: Case study for solar co-production of methanol and power," Applied Energy, Elsevier, vol. 183(C), pages 121-132.
    12. Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
    13. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    14. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    15. Fuqiang, Wang & Lanxin, Ma & Ziming, Cheng & Jianyu, Tan & Xing, Huang & Linhua, Liu, 2017. "Radiative heat transfer in solar thermochemical particle reactor: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 935-949.
    16. Chen, Qiang & Dong, Yixuan & Ding, Jing & Wang, Weilong & Lu, Jianfeng, 2024. "Thermochemical energy storage analysis of solar driven carbon dioxide reforming of methane in SiC-foam cavity reactor," Renewable Energy, Elsevier, vol. 224(C).
    17. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Investigation of a solar-biomass gasification system with the production of methanol and electricity: Thermodynamic, economic and off-design operation," Applied Energy, Elsevier, vol. 243(C), pages 91-101.
    18. Chen, Xue & Wang, Fuqiang & Yan, Xuewei & Han, Yafen & Cheng, Ziming & Jie, Zhu, 2018. "Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure," Energy, Elsevier, vol. 151(C), pages 545-555.
    19. Liu, Xiufeng & Hong, Hui & Jin, Hongguang, 2017. "Mid-temperature solar fuel process combining dual thermochemical reactions for effectively utilizing wider solar irradiance," Applied Energy, Elsevier, vol. 185(P2), pages 1031-1039.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    2. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    3. Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
    4. Gu, Rong & Ding, Jing & Wang, Yarong & Yuan, Qinquan & Wang, Weilong & Lu, Jianfeng, 2019. "Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator," Applied Energy, Elsevier, vol. 233, pages 789-801.
    5. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    6. Xu, Y.X. & Yan, J. & Zhao, C.Y., 2022. "Investigation on application temperature zone and exergy loss regulation based on MgCO3/MgO thermochemical heat storage and release process," Energy, Elsevier, vol. 239(PC).
    7. Andrade, L.A. & Barrozo, M.A.S. & Vieira, L.G.M., 2016. "A study on dynamic heating in solar dish concentrators," Renewable Energy, Elsevier, vol. 87(P1), pages 501-508.
    8. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    9. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    10. Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
    11. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
    14. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
    15. Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
    16. Nathan, G.J. & Battye, D.L. & Ashman, P.J., 2014. "Economic evaluation of a novel fuel-saver hybrid combining a solar receiver with a combustor for a solar power tower," Applied Energy, Elsevier, vol. 113(C), pages 1235-1243.
    17. Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    19. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    20. Seon Tae Kim & Haruka Miura & Hiroki Takasu & Yukitaka Kato & Alexandr Shkatulov & Yuri Aristov, 2019. "Adapting the MgO-CO 2 Working Pair for Thermochemical Energy Storage by Doping with Salts: Effect of the (LiK)NO 3 Content," Energies, MDPI, vol. 12(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1994-2004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.