IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp1362-1370.html
   My bibliography  Save this article

Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane

Author

Listed:
  • Bian, Zhoufeng
  • Deng, Shaobi
  • Sun, Zhenkun
  • Ge, Tianshu
  • Jiang, Bo
  • Zhong, Wenqi

Abstract

In this paper, a multi-core@shell catalyst LDH@SiO2 was fabricated by coating a silica layer over hexagonal Ni–Mg–Al LDH nanoplates. After calcination and H2-reduction, Ni nanoparticles were well dispersed on the support, as well as encapsulated within the mesoporous silica shell. The multi-core@shell catalyst was then tested in low temperature dry reforming of methane (DRM) at 600 °C and showed a stable CH4 conversion of 27% for 16 h time on stream. Characterizations of the spent catalyst indicated that there was almost no carbon formation and the multi-core@shell structure was well preserved. While the pristine layered double hydroxide (LDH) catalyst exhibited a severe carbon formation as 68%. The confinement effect conveyed by the unique multi-core@shell structure effectively suppressed metal sintering and carbon deposition. Besides, the thickness of the silica shell was tuned and it made a great difference to the catalytic activity due to the diffusion resistance.

Suggested Citation

  • Bian, Zhoufeng & Deng, Shaobi & Sun, Zhenkun & Ge, Tianshu & Jiang, Bo & Zhong, Wenqi, 2022. "Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane," Renewable Energy, Elsevier, vol. 200(C), pages 1362-1370.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1362-1370
    DOI: 10.1016/j.renene.2022.10.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122015397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.10.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    2. Alexey Kurlov & Evgeniya B. Deeva & Paula M. Abdala & Dmitry Lebedev & Athanasia Tsoukalou & Aleix Comas-Vives & Alexey Fedorov & Christoph R. Müller, 2020. "Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Roh, Hyun-Seog & Eum, Ic-Hwan & Jeong, Dae-Woon, 2012. "Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions," Renewable Energy, Elsevier, vol. 42(C), pages 212-216.
    4. Jalali, Ramin & Rezaei, Mehran & Nematollahi, Behzad & Baghalha, Morteza, 2020. "Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane," Renewable Energy, Elsevier, vol. 149(C), pages 1053-1067.
    5. Bian, Zhoufeng & Wang, Zhigang & Jiang, Bo & Hongmanorom, Plaifa & Zhong, Wenqi & Kawi, Sibudjing, 2020. "A review on perovskite catalysts for reforming of methane to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Dega, Frank Blondel & Chamoumi, Mostafa & Braidy, Nadi & Abatzoglou, Nicolas, 2019. "Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue," Renewable Energy, Elsevier, vol. 138(C), pages 1239-1249.
    7. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jalali, Ramin & Rezaei, Mehran & Nematollahi, Behzad & Baghalha, Morteza, 2020. "Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane," Renewable Energy, Elsevier, vol. 149(C), pages 1053-1067.
    2. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.
    3. Singh, Piyush Pratap & Jaswal, Anurag & Nirmalkar, Neelkanth & Mondal, Tarak, 2023. "Synergistic effect of transition metals substitution on the catalytic activity of LaNi0.5M0.5O3 (M = Co, Cu, and Fe) perovskite catalyst for steam reforming of simulated bio-oil for green hydrogen pro," Renewable Energy, Elsevier, vol. 207(C), pages 575-587.
    4. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Han, Won-Bi & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases," Renewable Energy, Elsevier, vol. 79(C), pages 91-95.
    5. LeValley, Trevor L. & Richard, Anthony R. & Fan, Maohong, 2015. "Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift," Energy, Elsevier, vol. 90(P1), pages 748-758.
    6. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    7. Georgiadis, Amvrosios G. & Tsiotsias, Anastasios I. & Siakavelas, George I. & Charisiou, Nikolaos D. & Ehrhardt, Benedikt & Wang, Wen & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & Mascott, 2024. "An experimental and theoretical approach for the biogas dry reforming reaction using perovskite-derived La0.8X0.2NiO3-δ catalysts (X = Sm, Pr, Ce)," Renewable Energy, Elsevier, vol. 227(C).
    8. Galina Xanthopoulou & Savvas Varitis & Manapkhan Zhumabek & Konstantinos Karanasios & George Vekinis & Svetlana A. Tungatarova & Tolkyn S. Baizhumanova, 2021. "Direct Reduction in Greenhouse Gases by Continuous Dry (CO 2 ) Reforming of Methane over Ni-Containing SHS Catalysts," Energies, MDPI, vol. 14(19), pages 1-13, September.
    9. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Nahar, Gaurav & Dupont, Valerie, 2014. "Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 777-796.
    11. Ahmed Abasaeed & Samsudeen Kasim & Wasim Khan & Mahmud Sofiu & Ahmed Ibrahim & Anis Fakeeha & Ahmed Al-Fatesh, 2021. "Hydrogen Yield from CO 2 Reforming of Methane: Impact of La 2 O 3 Doping on Supported Ni Catalysts," Energies, MDPI, vol. 14(9), pages 1-14, April.
    12. Vladislav Sadykov & Mikhail Simonov & Nikita Eremeev & Natalia Mezentseva, 2021. "Modern Trends in Design of Catalysts for Transformation of Biofuels into Syngas and Hydrogen: From Fundamental Bases to Performance in Real Feeds," Energies, MDPI, vol. 14(19), pages 1-25, October.
    13. Parente, Marcelo & Soria, M.A. & Madeira, Luis M., 2020. "Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study," Renewable Energy, Elsevier, vol. 157(C), pages 1254-1264.
    14. Bin Shao & Zhi-Qiang Wang & Xue-Qing Gong & Honglai Liu & Feng Qian & P. Hu & Jun Hu, 2023. "Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    16. Shim, Jae-Oh & Jeong, Dae-Woon & Jang, Won-Jun & Jeon, Kyung-Won & Jeon, Byong-Hun & Cho, Seung Yeon & Roh, Hyun-Seog & Na, Jeong-Geol & Ko, Chang Hyun & Oh, You-Kwan & Han, Sang Sub, 2014. "Deoxygenation of oleic acid over Ce(1–x)Zr(x)O2 catalysts in hydrogen environment," Renewable Energy, Elsevier, vol. 65(C), pages 36-40.
    17. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).
    18. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Guo, Qunwei & Geng, Jiaqi & Pan, Jiawen & Chi, Bo & Xiong, Chunyan & Pu, Jian, 2023. "A-site deficient La1-xCr0.95Ru0.05O3-δ perovskites for N-hexadecane steam reforming: Effect of steam activation and active oxygen," Renewable Energy, Elsevier, vol. 219(P2).
    20. Claudia Victoria Montoya-Bautista & Edwin Avella & Rosa-María Ramírez-Zamora & Rafael Schouwenaars, 2019. "Metallurgical Wastes Employed as Catalysts and Photocatalysts for Water Treatment: A Review," Sustainability, MDPI, vol. 11(9), pages 1-16, April.

    More about this item

    Keywords

    Low temperature DRM; H2 production; Multi-core@shell; Carbon resistance; Confinement effect;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1362-1370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.