Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.07.106
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kodama, T. & Shimizu, T. & Satoh, T. & Shimizu, K.-I., 2003. "Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst," Energy, Elsevier, vol. 28(11), pages 1055-1068.
- Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
- Jing, Q.S. & Zheng, X.M., 2006. "Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor," Energy, Elsevier, vol. 31(12), pages 2184-2192.
- Chicco, Gianfranco & Stephenson, Paule M., 2012. "Effectiveness of setting cumulative carbon dioxide emissions reduction targets," Energy, Elsevier, vol. 42(1), pages 19-31.
- Roh, Hyun-Seog & Eum, Ic-Hwan & Jeong, Dae-Woon, 2012. "Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions," Renewable Energy, Elsevier, vol. 42(C), pages 212-216.
- Richa Kothari & D. Buddhi & R.L. Sawhney, 2004. "Sources and technology for hydrogen production: a review," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 21(1/2), pages 154-178.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Lin & Tang, Dawei & Song, Yongchen & Jiang, Bo & Zhang, Qian, 2018. "Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts," Energy, Elsevier, vol. 149(C), pages 937-943.
- Mboowa, Drake & Quereshi, Shireen & Bhattacharjee, Chiranjit & Tonny, Kukeera & Dutta, Suman, 2017. "Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India)," Energy, Elsevier, vol. 123(C), pages 386-391.
- Lee, Chan Hyun & Lee, Ki Bong, 2017. "Sorption-enhanced water gas shift reaction for high-purity hydrogen production: Application of a Na-Mg double salt-based sorbent and the divided section packing concept," Applied Energy, Elsevier, vol. 205(C), pages 316-322.
- Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Dhir, Amit, 2019. "Hydrogen enrichment of biogas via dry and autothermal-dry reforming with pure nickel (Ni) nanoparticle," Energy, Elsevier, vol. 172(C), pages 733-739.
- Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
- Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023.
"Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios,"
International Economics, Elsevier, vol. 176(C).
- Gondia Sokhna Seck & Emmanuel Hache & Vincent d'Herbemont & Mathis Guyot & Louis-Marie Malbec, 2023. "Hydrogen Development in Europe : Estimating Material Consumption in Net Zero Emissions Scenarios," Post-Print hal-04253822, HAL.
- Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
- Ryi, Shin-Kun & Lee, Chun-Boo & Lee, Sung-Wook & Hwang, Kyung-Ran & Park, Jong-Soo, 2012. "Hydrogen recovery from ethylene mixture with PD-AU composite membrane," Energy, Elsevier, vol. 47(1), pages 3-10.
- Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Han, Won-Bi & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases," Renewable Energy, Elsevier, vol. 79(C), pages 91-95.
- Habib, Mohamed A. & Salaudeen, Shakirudeen A. & Nemitallah, Medhat A. & Ben-Mansour, R. & Mokheimer, Esmail M.A., 2016. "Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor," Energy, Elsevier, vol. 96(C), pages 654-665.
- Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
- Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
- Bian, Zhoufeng & Deng, Shaobi & Sun, Zhenkun & Ge, Tianshu & Jiang, Bo & Zhong, Wenqi, 2022. "Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane," Renewable Energy, Elsevier, vol. 200(C), pages 1362-1370.
- Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
- Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, vol. 9(12), pages 1-18, December.
- Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Yuna Seo & Masaya Suzuki & Tetsuichi Takagi & Kiyoshi Dowaki, 2019. "Life-Cycle Assessment of Adsorbents for Biohydrogen Production," Resources, MDPI, vol. 8(1), pages 1-11, March.
- Kothari, Richa & Buddhi, D. & Sawhney, R.L., 2008. "Comparison of environmental and economic aspects of various hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 553-563, February.
- P. Balachandra & B. Sudhakara Reddy, 2007.
"Hydrogen energy for Indian transport sector: A Well-to-wheel techno-economic and environmental feasibility analysis,"
Indira Gandhi Institute of Development Research, Mumbai Working Papers
2007-004, Indira Gandhi Institute of Development Research, Mumbai, India.
- P. Balachandra & B. Sudhakara Reddy, 2007. "Hydrogen Energy For Indian Transport Sector - A Well-To-Wheel Techno-Economic and Environmental Feasibility Analysis," Energy Working Papers 22323, East Asian Bureau of Economic Research.
- B. Sudhakara Reddy & P. Balachandra, 2010. "Hydrogen Energy For Indian Transport Sector: A Well-To-Wheel Techno-Economic and Environmental Feasibility Analysis," Working Papers id:2721, eSocialSciences.
- Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
- Restrepo, Álvaro & Miyake, Raphael & Kleveston, Fábio & Bazzo, Edson, 2012. "Exergetic and environmental analysis of a pulverized coal power plant," Energy, Elsevier, vol. 45(1), pages 195-202.
- Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Paitazoglou, Christopher, 2012. "Environmental evaluation of a power plant using conventional and advanced exergy-based methods," Energy, Elsevier, vol. 45(1), pages 23-30.
- Koo, Choongwan & Kim, Hyunjoong & Hong, Taehoon, 2014. "Framework for the analysis of the low-carbon scenario 2020 to achieve the national carbon Emissions reduction target: Focused on educational facilities," Energy Policy, Elsevier, vol. 73(C), pages 356-367.
More about this item
Keywords
Hydrogen energy; Low temperature steam reforming of methane; Water gas shift; Reduction in carbon emissions; Noble metal replacement;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:748-758. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.