IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v42y2012icp212-216.html
   My bibliography  Save this article

Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions

Author

Listed:
  • Roh, Hyun-Seog
  • Eum, Ic-Hwan
  • Jeong, Dae-Woon

Abstract

Steam reforming of methane (SRM) is the primary method to produce hydrogen. Commercial Ni-based catalysts have been optimized for SRM with excess steam (H2O/CH4 > 2.5) at high temperatures (>700 °C). However, commercial catalysts are not suitable under severe reaction conditions such as stoichiometric steam over methane ratio (H2O/CH4 = 1.0) and low temperature (600 °C). In this study, SRM has been carried out at a gas hourly space velocity (GHSV) of 155426 h−1 over Ni–Ce(1−x)Zr(x)O2 catalysts prepared by a co-precipitation method. The CeO2/ZrO2 ratio was systematically varied to optimize Ni–Ce(1−x)Zr(x)O2 catalysts at a H2O/CH4 ratio of 1.0 and at 600 °C. 15 wt.% Ni–Ce0.8Zr0.2O2 exhibited the highest CH4 conversion as well as stability with time on stream due to high oxygen storage capacity.

Suggested Citation

  • Roh, Hyun-Seog & Eum, Ic-Hwan & Jeong, Dae-Woon, 2012. "Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions," Renewable Energy, Elsevier, vol. 42(C), pages 212-216.
  • Handle: RePEc:eee:renene:v:42:y:2012:i:c:p:212-216
    DOI: 10.1016/j.renene.2011.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111004563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. LeValley, Trevor L. & Richard, Anthony R. & Fan, Maohong, 2015. "Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift," Energy, Elsevier, vol. 90(P1), pages 748-758.
    2. Jeong, Dae-Woon & Jang, Won-Jun & Shim, Jae-Oh & Han, Won-Bi & Roh, Hyun-Seog & Jung, Un Ho & Yoon, Wang Lai, 2014. "Low-temperature water–gas shift reaction over supported Cu catalysts," Renewable Energy, Elsevier, vol. 65(C), pages 102-107.
    3. Jeong, Dae-Woon & Jang, Won-Jun & Shim, Jae-Oh & Han, Won-Bi & Kim, Hak-Min & Lee, Yeol-Lim & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Optimization of a highly active nano-sized Pt/CeO2 catalyst via Ce(OH)CO3 for the water-gas shift reaction," Renewable Energy, Elsevier, vol. 79(C), pages 78-84.
    4. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Han, Won-Bi & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases," Renewable Energy, Elsevier, vol. 79(C), pages 91-95.
    6. Shim, Jae-Oh & Jeong, Dae-Woon & Jang, Won-Jun & Jeon, Kyung-Won & Jeon, Byong-Hun & Cho, Seung Yeon & Roh, Hyun-Seog & Na, Jeong-Geol & Ko, Chang Hyun & Oh, You-Kwan & Han, Sang Sub, 2014. "Deoxygenation of oleic acid over Ce(1–x)Zr(x)O2 catalysts in hydrogen environment," Renewable Energy, Elsevier, vol. 65(C), pages 36-40.
    7. Bian, Zhoufeng & Deng, Shaobi & Sun, Zhenkun & Ge, Tianshu & Jiang, Bo & Zhong, Wenqi, 2022. "Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane," Renewable Energy, Elsevier, vol. 200(C), pages 1362-1370.
    8. Jalali, Ramin & Rezaei, Mehran & Nematollahi, Behzad & Baghalha, Morteza, 2020. "Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane," Renewable Energy, Elsevier, vol. 149(C), pages 1053-1067.
    9. Nahar, Gaurav & Dupont, Valerie, 2014. "Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 777-796.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:42:y:2012:i:c:p:212-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.