IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1151-1163.html
   My bibliography  Save this article

Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis

Author

Listed:
  • Martínez González, Aldemar
  • Lesme Jaén, René
  • Silva Lora, Electo Eduardo

Abstract

Biomass thermochemical conversion into heat and electricity is a promising technological alternative for the management of the biomass residues from the sawmill process. In this study, an energetic and exergetic analysis for syngas production from biomass gasification has been performed, including its potential use for heat and power generation. A stoichiometric model of biomass gasification with air as gasifying agent was accomplished to evaluate the syngas production and the potential energy recovery from pinewood chips residues. From the thermodynamic analysis of the biomass residues gasification process and syngas production, it was observed that a cold-gas and hot-gas efficiencies close to 74.5% and 84.6% could be achieved by considering an ER ratio of 0.34, respectively; while energy losses represented 15.3% of the total energy input to the gasifier. Furthermore, an exergy balance of the integrated gasification-power plant (IGPP) was considered. Biomass gasification and power generation processes showed a higher contribution to the total destroyed exergy; reaching values of 42.4% and 45.5% of the total destroyed exergy, respectively. According to energy balance, the IGPP and heat recovery from exhaust gases could supply 52.6% of electricity and 38.9% of thermal energy requirements for the sawmill process.

Suggested Citation

  • Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1151-1163
    DOI: 10.1016/j.renene.2019.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dowaki, Kiyoshi & Mori, Shunsuke, 2005. "Biomass energy used in a sawmill," Applied Energy, Elsevier, vol. 80(3), pages 327-339, March.
    2. Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2011. "Thermodynamic analysis of air-blown gasification for IGCC applications," Applied Energy, Elsevier, vol. 88(11), pages 3949-3958.
    3. Alauddin, Zainal Alimuddin Bin Zainal & Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2010. "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2852-2862, December.
    4. Yueshi Wu & Weihong Yang & Wlodzimierz Blasiak, 2014. "Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass," Energies, MDPI, vol. 7(4), pages 1-16, April.
    5. Lee, Uisung & Balu, Elango & Chung, J.N., 2013. "An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications," Applied Energy, Elsevier, vol. 101(C), pages 699-708.
    6. Karamarkovic, Rade & Karamarkovic, Vladan, 2010. "Energy and exergy analysis of biomass gasification at different temperatures," Energy, Elsevier, vol. 35(2), pages 537-549.
    7. Xiang, Yangyang & Zhou, Jingsong & Lin, Bowen & Xue, Xiaoao & Tian, Xingtao & Luo, Zhongyang, 2015. "Exergetic evaluation of renewable light olefins production from biomass via synthetic methanol," Applied Energy, Elsevier, vol. 157(C), pages 499-507.
    8. Rovas, Dimitrios & Zabaniotou, Anastasia, 2015. "Exergy analysis of a small gasification-ICE integrated system for CHP production fueled with Mediterranean agro-food processing wastes: The SMARt-CHP," Renewable Energy, Elsevier, vol. 83(C), pages 510-517.
    9. Aghbashlo, Mortaza & Mandegari, Mohsen & Tabatabaei, Meisam & Farzad, Somayeh & Mojarab Soufiyan, Mohamad & Görgens, Johann F., 2018. "Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production," Energy, Elsevier, vol. 149(C), pages 623-638.
    10. Zhang, Qinglin & Wu, Yueshi & Dor, Liran & Yang, Weihong & Blasiak, Wlodzimierz, 2013. "A thermodynamic analysis of solid waste gasification in the Plasma Gasification Melting process," Applied Energy, Elsevier, vol. 112(C), pages 405-413.
    11. Anderson, Jan-Olof & Toffolo, Andrea, 2013. "Improving energy efficiency of sawmill industrial sites by integration with pellet and CHP plants," Applied Energy, Elsevier, vol. 111(C), pages 791-800.
    12. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    13. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    14. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    15. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    16. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    17. Dincer, Ibrahim, 2002. "The role of exergy in energy policy making," Energy Policy, Elsevier, vol. 30(2), pages 137-149, January.
    18. Anderson, Jan-Olof & Westerlund, Lars, 2014. "Improved energy efficiency in sawmill drying system," Applied Energy, Elsevier, vol. 113(C), pages 891-901.
    19. Yun, Kyung Tae & Cho, Heejin & Luck, Rogelio & Mago, Pedro J., 2013. "Modeling of reciprocating internal combustion engines for power generation and heat recovery," Applied Energy, Elsevier, vol. 102(C), pages 327-335.
    20. Sansaniwal, S.K. & Pal, K. & Rosen, M.A. & Tyagi, S.K., 2017. "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 363-384.
    21. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    22. Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
    23. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    24. Zamar, David S. & Gopaluni, Bhushan & Sokhansanj, Shahab, 2017. "Optimization of sawmill residues collection for bioenergy production," Applied Energy, Elsevier, vol. 202(C), pages 487-495.
    25. Anderson, Jan-Olof & Westerlund, Lars, 2011. "Surplus biomass through energy efficient kilns," Applied Energy, Elsevier, vol. 88(12), pages 4848-4853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al Asfar, Jamil & AlShwawra, Ahmad & Shaban, Nabeel Abu & Alrbai, Mohammad & Qawasmeh, Bashar R. & Sakhrieh, Ahmad & Hamdan, Mohammad A. & Odeh, Omar, 2020. "Thermodynamic analysis of a biomass-fired lab-scale power plant," Energy, Elsevier, vol. 194(C).
    2. Hasan Yildizhan & Cihan Yıldırım & Shiva Gorjian & Arman Ameen, 2023. "How May New Energy Investments Change the Sustainability of the Turkish Industrial Sector?," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    3. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo José & Yepes Maya, Diego Mauricio, 2021. "Assessment of the energy recovery potential of oil sludge through gasification aiming electricity generation," Energy, Elsevier, vol. 215(PB).
    4. Zalazar-Garcia, Daniela & Fernandez, Anabel & Rodriguez-Ortiz, Leandro & Torres, Erick & Reyes-Urrutia, Andrés & Echegaray, Marcelo & Rodriguez, Rosa & Mazza, Germán, 2022. "Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software," Renewable Energy, Elsevier, vol. 201(P1), pages 60-71.
    5. Martillo Aseffe, José Alfonso & Martínez González, Aldemar & Jaén, René Lesme & Silva Lora, Electo Eduardo, 2021. "The corn cob gasification-based renewable energy recovery in the life cycle environmental performance of seed-corn supply chain: An Ecuadorian case study," Renewable Energy, Elsevier, vol. 163(C), pages 1523-1535.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    2. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    3. Leino, M. & Uusitalo, V. & Grönman, A. & Nerg, J. & Horttanainen, M. & Soukka, R. & Pyrhönen, J., 2016. "Economics and greenhouse gas balance of distributed electricity production at sawmills using hermetic turbogenerator," Renewable Energy, Elsevier, vol. 88(C), pages 102-111.
    4. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    6. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    7. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    8. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    9. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Lak Kamari, Mojtaba & Maleki, Akbar & Daneshpour, Raheleh & Rosen, Marc A. & Pourfayaz, Fathollah & Alhuyi Nazari, Mohammad, 2023. "Exergy, energy and environmental evaluation of a biomass-assisted integrated plant for multigeneration fed by various biomass sources," Energy, Elsevier, vol. 263(PB).
    11. Patuzzi, Francesco & Prando, Dario & Vakalis, Stergios & Rizzo, Andrea Maria & Chiaramonti, David & Tirler, Werner & Mimmo, Tanja & Gasparella, Andrea & Baratieri, Marco, 2016. "Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)," Energy, Elsevier, vol. 112(C), pages 285-293.
    12. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    13. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    14. Wang, Linwei & Izaharuddin, Ainul N. & Karimi, Nader & Paul, Manosh C., 2021. "A numerical investigation of CO2 gasification of biomass particles- analysis of energy, exergy and entropy generation," Energy, Elsevier, vol. 228(C).
    15. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    16. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    17. Li, Xian & Chen, Jialing & Sun, Xiangyu & Zhao, Yao & Chong, Clive & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Multi-criteria decision making of biomass gasification-based cogeneration systems with heat storage and solid dehumidification of desiccant coated heat exchangers," Energy, Elsevier, vol. 233(C).
    18. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    19. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1151-1163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.