IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p537-549.html
   My bibliography  Save this article

Energy and exergy analysis of biomass gasification at different temperatures

Author

Listed:
  • Karamarkovic, Rade
  • Karamarkovic, Vladan

Abstract

Biomass is usually gasified above the optimal temperature at the carbon-boundary point, due to the use of different types of gasifiers, gasifying media, clinkering/slagging of bed material, tar cracking, etc. This paper is focused on air gasification of biomass with different moisture at different gasification temperatures. A chemical equilibrium model is developed and analyses are carried out at pressures of 1 and 10 bar with the typical biomass feed represented by CH1.4O0.59N0.0017. At the temperature range 900–1373K, the increase of moisture in biomass leads to the decrease of efficiencies for the examined processes. The moisture content of biomass may be designated as “optimal” only if the gasification temperature is equal to the carbon-boundary temperature for biomass with that specific moisture content. Compared with the efficiencies based on chemical energy and exergy, biomass feedstock drying with the product gas sensible heat is less beneficial for the efficiency based on total exergy. The gasification process at a given gasification temperature can be improved by the use of dry biomass and by the carbon-boundary temperature approaching the required temperature with the change of gasification pressure or with the addition of heat in the process.

Suggested Citation

  • Karamarkovic, Rade & Karamarkovic, Vladan, 2010. "Energy and exergy analysis of biomass gasification at different temperatures," Energy, Elsevier, vol. 35(2), pages 537-549.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:537-549
    DOI: 10.1016/j.energy.2009.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209004551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
    2. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2007. "From coal to biomass gasification: Comparison of thermodynamic efficiency," Energy, Elsevier, vol. 32(7), pages 1248-1259.
    3. Karellas, S. & Karl, J. & Kakaras, E., 2008. "An innovative biomass gasification process and its coupling with microturbine and fuel cell systems," Energy, Elsevier, vol. 33(2), pages 284-291.
    4. Hamel, Stefan & Hasselbach, Holger & Weil, Steffen & Krumm, Wolfgang, 2007. "Autothermal two-stage gasification of low-density waste-derived fuels," Energy, Elsevier, vol. 32(2), pages 95-107.
    5. Ptasinski, Krzysztof J. & Prins, Mark J. & Pierik, Anke, 2007. "Exergetic evaluation of biomass gasification," Energy, Elsevier, vol. 32(4), pages 568-574.
    6. Jarungthammachote, S. & Dutta, A., 2007. "Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier," Energy, Elsevier, vol. 32(9), pages 1660-1669.
    7. Prins, M.J. & Ptasinski, K.J., 2005. "Energy and exergy analyses of the oxidation and gasification of carbon," Energy, Elsevier, vol. 30(7), pages 982-1002.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    2. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    3. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    5. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    6. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    7. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    8. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    9. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    10. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    11. He, Chang & Feng, Xiao & Chu, Khim Hoong, 2013. "Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant," Applied Energy, Elsevier, vol. 111(C), pages 742-757.
    12. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    13. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    14. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    15. Bang-Møller, C. & Rokni, M. & Elmegaard, B. & Ahrenfeldt, J. & Henriksen, U.B., 2013. "Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells," Energy, Elsevier, vol. 58(C), pages 527-537.
    16. Mahmood, Russell & Parshetti, Ganesh K. & Balasubramanian, Rajasekhar, 2016. "Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil," Energy, Elsevier, vol. 102(C), pages 187-198.
    17. Janajreh, Isam & Adeyemi, Idowu & Raza, Syed Shabbar & Ghenai, Chaouki, 2021. "A review of recent developments and future prospects in gasification systems and their modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    19. Loha, Chanchal & Gu, Sai & De Wilde, Juray & Mahanta, Pinakeswar & Chatterjee, Pradip K., 2014. "Advances in mathematical modeling of fluidized bed gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 688-715.
    20. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:537-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.