IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i12p4848-4853.html
   My bibliography  Save this article

Surplus biomass through energy efficient kilns

Author

Listed:
  • Anderson, Jan-Olof
  • Westerlund, Lars

Abstract

The use of biomass in the European Union has increased since the middle of the 1990s, mostly because of high subsidies and CO2 emission regulation through the Kyoto protocol. The sawmills are huge biomass suppliers to the market; out of the Swedish annual lumber production of 16.4Mm3, 95% is produced by medium to large-volume sawmills with a lumber quotient of 47%. The remaining part is produced as biomass. An essential part (12%) of the entering timber is used for supply of heat in their production processes, mostly in the substantial drying process. The drying process is the most time and heat consuming process in the sawmill. This study was undertaken to determine the sawmills’ national use of energy and potential magnitude of improvements. If the drying process can be made more effective, sawmills’ own use of biomass can be decreased and allow a considerably larger supply to the biomass market through processed or unprocessed biomass, heat or electricity production. The national electricity and heat usage when drying the lumber have been analysed by theoretical evaluation and experimental validation at a batch kiln. The main conclusion is that the heat consumption for drying lumber among the Swedish sawmills is 4.9TWh/year, and with available state-of-the-art techniques it is possible to decrease the national heat consumption by approximately 2.9TWh. This additional amount of energy corresponds to the market’s desire for larger energy supply.

Suggested Citation

  • Anderson, Jan-Olof & Westerlund, Lars, 2011. "Surplus biomass through energy efficient kilns," Applied Energy, Elsevier, vol. 88(12), pages 4848-4853.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4848-4853
    DOI: 10.1016/j.apenergy.2011.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911004156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Westerlund, L. & Dahl, J., 1994. "Absorbers in the open absorption system," Applied Energy, Elsevier, vol. 48(1), pages 33-49.
    2. Westerlund, L. & Dahl, J., 1991. "Open absorption system: Experimental study in a laboratory pilot plant," Applied Energy, Elsevier, vol. 38(3), pages 215-229.
    3. Johansson, L & Westerlund, L, 2000. "An open absorption system installed at a sawmill," Energy, Elsevier, vol. 25(11), pages 1067-1079.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, Jan-Olof & Toffolo, Andrea, 2013. "Improving energy efficiency of sawmill industrial sites by integration with pellet and CHP plants," Applied Energy, Elsevier, vol. 111(C), pages 791-800.
    2. Nwachukwu, Chinedu M. & Toffolo, Andrea & Wetterlund, Elisabeth, 2020. "Biomass-based gas use in Swedish iron and steel industry – Supply chain and process integration considerations," Renewable Energy, Elsevier, vol. 146(C), pages 2797-2811.
    3. Anderson, Jan-Olof & Westerlund, Lars, 2014. "Improved energy efficiency in sawmill drying system," Applied Energy, Elsevier, vol. 113(C), pages 891-901.
    4. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anderson, Jan-Olof & Westerlund, Lars, 2014. "Improved energy efficiency in sawmill drying system," Applied Energy, Elsevier, vol. 113(C), pages 891-901.
    2. Johansson, L & Westerlund, L, 2000. "An open absorption system installed at a sawmill," Energy, Elsevier, vol. 25(11), pages 1067-1079.
    3. Westerlund, Lars & Hermansson, Roger & Fagerström, Jonathan, 2012. "Flue gas purification and heat recovery: A biomass fired boiler supplied with an open absorption system," Applied Energy, Elsevier, vol. 96(C), pages 444-450.
    4. Angelo Del Giudice & Andrea Acampora & Enrico Santangelo & Luigi Pari & Simone Bergonzoli & Ettore Guerriero & Francesco Petracchini & Marco Torre & Valerio Paolini & Francesco Gallucci, 2019. "Wood Chip Drying through the Using of a Mobile Rotary Dryer," Energies, MDPI, vol. 12(9), pages 1-16, April.
    5. Johansson, L. & Westerlund, L., 2000. "Energy efficient bio fuel drying with an open absorption system Parameter study in order to reduce investment costs," Applied Energy, Elsevier, vol. 67(3), pages 231-244, November.
    6. Danon, Gradimir & Furtula, Mladen & Mandić, Marija, 2012. "Possibilities of implementation of CHP (combined heat and power) in the wood industry in Serbia," Energy, Elsevier, vol. 48(1), pages 169-176.
    7. Johansson, L. & Westerlund, L., 2001. "Energy savings in indoor swimming-pools: comparison between different heat-recovery systems," Applied Energy, Elsevier, vol. 70(4), pages 281-303, December.
    8. Yang, Bo & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Wei, Maolin & Guo, Dongcai, 2020. "Techno-economic study of full-open absorption heat pump applied to flue gas total heat recovery," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4848-4853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.