IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v202y2017icp487-495.html
   My bibliography  Save this article

Optimization of sawmill residues collection for bioenergy production

Author

Listed:
  • Zamar, David S.
  • Gopaluni, Bhushan
  • Sokhansanj, Shahab

Abstract

The collection of sawmill residues is an important logistic activity for the pulp and paper industry, which uses the biomass as a source of energy. We study a vehicle routing problem for a network composed of a single depot and several sawmills. The sawmills serve as potential suppliers of biomass residues to the depot, which in turn processes and distributes the residues to the pulp and paper mills. This problem consists of identifying the best daily routing schedule for a fixed number of trucks. The objective is to maximize the ratio of energy returned on energy invested, while satisfying a minimum daily amount of dried biomass residues. There are several random components in the problem, including the availability and moisture content of the biomass residues. We use a combination of scenario analysis and heuristics to solve this stochastic vehicle routing problem. A performance comparison of the proposed method reveals an estimated daily energy savings of 6 GJ over the benchmark method.

Suggested Citation

  • Zamar, David S. & Gopaluni, Bhushan & Sokhansanj, Shahab, 2017. "Optimization of sawmill residues collection for bioenergy production," Applied Energy, Elsevier, vol. 202(C), pages 487-495.
  • Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:487-495
    DOI: 10.1016/j.apenergy.2017.05.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917306906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2015. "Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts," Renewable Energy, Elsevier, vol. 80(C), pages 286-300.
    2. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    3. Loecher, Markus & Ropkins, Karl, 2015. "RgoogleMaps and loa: Unleashing R Graphics Power on Map Tiles," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i04).
    4. Gilbert Laporte & François V. Louveaux & Hélène Mercure, 1994. "A Priori Optimization of the Probabilistic Traveling Salesman Problem," Operations Research, INFORMS, vol. 42(3), pages 543-549, June.
    5. Laporte, Gilbert & Louveaux, Francois & Mercure, Helene, 1989. "Models and exact solutions for a class of stochastic location-routing problems," European Journal of Operational Research, Elsevier, vol. 39(1), pages 71-78, March.
    6. Stewart, William R. & Golden, Bruce L., 1983. "Stochastic vehicle routing: A comprehensive approach," European Journal of Operational Research, Elsevier, vol. 14(4), pages 371-385, December.
    7. Jokinen, Raine & Pettersson, Frank & Saxén, Henrik, 2015. "An MILP model for optimization of a small-scale LNG supply chain along a coastline," Applied Energy, Elsevier, vol. 138(C), pages 423-431.
    8. Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
    9. Bastian, Cock & Rinnooy Kan, Alexander H. G., 1992. "The stochastic vehicle routing problem revisited," European Journal of Operational Research, Elsevier, vol. 56(3), pages 407-412, February.
    10. Junlong Zhang & William Lam & Bi Chen, 2013. "A Stochastic Vehicle Routing Problem with Travel Time Uncertainty: Trade-Off Between Cost and Customer Service," Networks and Spatial Economics, Springer, vol. 13(4), pages 471-496, December.
    11. Michel Gendreau & Gilbert Laporte & René Séguin, 1995. "An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers," Transportation Science, INFORMS, vol. 29(2), pages 143-155, May.
    12. Krishna Chepuri & Tito Homem-de-Mello, 2005. "Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 153-181, February.
    13. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    14. Eom, Jiyong & Schipper, Lee & Thompson, Lou, 2012. "We keep on truckin': Trends in freight energy use and carbon emissions in 11 IEA countries," Energy Policy, Elsevier, vol. 45(C), pages 327-341.
    15. Angel Alejandro Juan & Carlos Alberto Mendez & Javier Faulin & Jesica De Armas & Scott Erwin Grasman, 2016. "Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges," Energies, MDPI, vol. 9(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Su, Zhanpeng & Li, Yang, 2021. "Economic analysis of different straw supply modes in China," Energy, Elsevier, vol. 237(C).
    2. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    3. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
    4. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    5. Malladi, Krishna Teja & Quirion-Blais, Olivier & Sowlati, Taraneh, 2018. "Development of a decision support tool for optimizing the short-term logistics of forest-based biomass," Applied Energy, Elsevier, vol. 216(C), pages 662-677.
    6. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    7. Eliana M. A. Guerreiro & Maicon Silva & Marcio Guerreiro & Taís Carvalho & Attilio Converti & Hugo Valadares Siqueira & Cassiano Moro Piekarski, 2022. "Framework for Optimized Analysis of Waste Bioenergy Projects," Energies, MDPI, vol. 15(17), pages 1-15, August.
    8. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    2. Gendreau, Michel & Laporte, Gilbert & Seguin, Rene, 1996. "Stochastic vehicle routing," European Journal of Operational Research, Elsevier, vol. 88(1), pages 3-12, January.
    3. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    4. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    5. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    6. Krishna Chepuri & Tito Homem-de-Mello, 2005. "Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 153-181, February.
    7. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    8. Novaes, Antonio G. N. & Graciolli, Odacir D., 1999. "Designing multi-vehicle delivery tours in a grid-cell format," European Journal of Operational Research, Elsevier, vol. 119(3), pages 613-634, December.
    9. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    10. Alexandra Anderluh & Rune Larsen & Vera C. Hemmelmayr & Pamela C. Nolz, 2020. "Impact of travel time uncertainties on the solution cost of a two-echelon vehicle routing problem with synchronization," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 806-828, December.
    11. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    12. Florio, Alexandre M. & Hartl, Richard F. & Minner, Stefan, 2020. "Optimal a priori tour and restocking policy for the single-vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 285(1), pages 172-182.
    13. Luo, Zhixing & Qin, Hu & Zhang, Dezhi & Lim, Andrew, 2016. "Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 69-89.
    14. Seyedmehdi Mirmohammadsadeghi & Shamsuddin Ahmed, 2015. "Memetic Heuristic Approach for Solving Truck and Trailer Routing Problems with Stochastic Demands and Time Windows," Networks and Spatial Economics, Springer, vol. 15(4), pages 1093-1115, December.
    15. Beraldi, Patrizia & Bruni, Maria Elena & Laganà, Demetrio & Musmanno, Roberto, 2015. "The mixed capacitated general routing problem under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(2), pages 382-392.
    16. Aykagan Ak & Alan L. Erera, 2007. "A Paired-Vehicle Recourse Strategy for the Vehicle-Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 41(2), pages 222-237, May.
    17. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    18. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    19. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Hernan Caceres & Rajan Batta & Qing He, 2017. "School Bus Routing with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 51(4), pages 1349-1364, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:202:y:2017:i:c:p:487-495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.