IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp499-507.html
   My bibliography  Save this article

Exergetic evaluation of renewable light olefins production from biomass via synthetic methanol

Author

Listed:
  • Xiang, Yangyang
  • Zhou, Jingsong
  • Lin, Bowen
  • Xue, Xiaoao
  • Tian, Xingtao
  • Luo, Zhongyang

Abstract

In this paper, an exergetic evaluation was conducted on a two-step biomass-derived light olefins system established using ASPEN PLUS. This system linked methanol synthesis via entrained-flow gasification to a methanol-to-olefins (MTO) process. The mass yield of the system was 0.248kg light olefins per kg biomass, which is relatively higher than the literature results. The energetic and exergetic efficiencies of this system were 54.66% and 47.65%, respectively. The results of an exergetic analysis indicate that the biomass gasification, steam cycle, methanol separation, CO2 removal and olefins separation produce most of the system inefficiencies. By identifying the occurrence mechanism of the exergy losses, the potential for improvement can be obtained. A further increase of exergetic performance can be obtained from (1) improvement of gasification process via combining biomass torrefaction, and (2) enhancement of energy integration processes via heat network optimization and power generation from the produced steam.

Suggested Citation

  • Xiang, Yangyang & Zhou, Jingsong & Lin, Bowen & Xue, Xiaoao & Tian, Xingtao & Luo, Zhongyang, 2015. "Exergetic evaluation of renewable light olefins production from biomass via synthetic methanol," Applied Energy, Elsevier, vol. 157(C), pages 499-507.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:499-507
    DOI: 10.1016/j.apenergy.2015.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915006492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piekarczyk, Wodzisław & Czarnowska, Lucyna & Ptasiński, Krzysztof & Stanek, Wojciech, 2013. "Thermodynamic evaluation of biomass-to-biofuels production systems," Energy, Elsevier, vol. 62(C), pages 95-104.
    2. Lundgren, J. & Ekbom, T. & Hulteberg, C. & Larsson, M. & Grip, C.-E. & Nilsson, L. & Tunå, P., 2013. "Methanol production from steel-work off-gases and biomass based synthesis gas," Applied Energy, Elsevier, vol. 112(C), pages 431-439.
    3. Geuzebroek, F.H. & Schneiders, L.H.J.M. & Kraaijveld, G.J.C. & Feron, P.H.M., 2004. "Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus," Energy, Elsevier, vol. 29(9), pages 1241-1248.
    4. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    5. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    6. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2010. "Review and analysis of biomass gasification models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2841-2851, December.
    7. Lee, Jae Chul & Lee, Hyeon Hui & Joo, Yong Jin & Lee, Chang Ha & Oh, Min, 2014. "Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier," Energy, Elsevier, vol. 64(C), pages 58-68.
    8. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    9. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.
    10. Juraščík, Martin & Sues, Anna & Ptasinski, Krzysztof J., 2010. "Exergy analysis of synthetic natural gas production method from biomass," Energy, Elsevier, vol. 35(2), pages 880-888.
    11. Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiangxiang & Sun, Zhuang & Kuo, Po-Chih & Aziz, Muhammad, 2024. "Carbon-negative olefins production from biomass and solar energy via direct chemical looping," Energy, Elsevier, vol. 289(C).
    2. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    3. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    4. Yang, Wenjie & Xu, Youhao & Shu, Xingtian & Wang, Xin & Bai, Xuhui & Zuo, Yanfen & Luo, Yibin & Ouyang, Ying, 2023. "Insights into the effects of zeolite structural confinement on pentene catalytic cracking to light olefins," Applied Energy, Elsevier, vol. 349(C).
    5. Patel, Sanjay K.S. & Selvaraj, Chandrabose & Mardina, Primata & Jeong, Jae-Hoon & Kalia, Vipin C. & Kang, Yun Chan & Lee, Jung-Kul, 2016. "Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization," Applied Energy, Elsevier, vol. 171(C), pages 383-391.
    6. Liu, Chao & Liu, Jingyong & Evrendilek, Fatih & Xie, Wuming & Kuo, Jiahong & Buyukada, Musa, 2020. "Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS," Renewable Energy, Elsevier, vol. 148(C), pages 1074-1093.
    7. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    8. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    9. Zhao, Zhitong & Chong, Katie & Jiang, Jingyang & Wilson, Karen & Zhang, Xiaochen & Wang, Feng, 2018. "Low-carbon roadmap of chemical production: A case study of ethylene in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 580-591.
    10. Martínez González, Aldemar & Lesme Jaén, René & Silva Lora, Electo Eduardo, 2020. "Thermodynamic assessment of the integrated gasification-power plant operating in the sawmill industry: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 1151-1163.
    11. Jiang, Peng & Parvez, Ashak Mahmud & Meng, Yang & Xu, Meng-xia & Shui, Tian-chi & Sun, Cheng-gong & Wu, Tao, 2019. "Exergetic, economic and carbon emission studies of bio-olefin production via indirect steam gasification process," Energy, Elsevier, vol. 187(C).
    12. Li, Yuping & Tan, Fenghua & Peng, Jiangang & Feng, Mi & Liao, Yuhe & Luo, Weimin & Dong, Kaijun & Long, Jinxing, 2023. "Exergy analysis of alternative configurations of biomass gasification-mixed alcohol production system via catalytic synthesis and fermentation," Energy, Elsevier, vol. 280(C).
    13. Lak Kamari, Mojtaba & Maleki, Akbar & Daneshpour, Raheleh & Rosen, Marc A. & Pourfayaz, Fathollah & Alhuyi Nazari, Mohammad, 2023. "Exergy, energy and environmental evaluation of a biomass-assisted integrated plant for multigeneration fed by various biomass sources," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    2. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    3. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
    4. Kapsalyamova, Zhanna & Paltsev, Sergey, 2020. "Use of natural gas and oil as a source of feedstocks," Energy Economics, Elsevier, vol. 92(C).
    5. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    7. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
    8. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    9. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    10. Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
    11. Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
    12. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    13. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    14. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    15. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    16. Li, Sheng & Ji, Xiaozhou & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2014. "Coal to SNG: Technical progress, modeling and system optimization through exergy analysis," Applied Energy, Elsevier, vol. 136(C), pages 98-109.
    17. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    18. Zhang, Dongqiang & Duan, Runhao & Li, Hongwei & Yang, Qingchun & Zhou, Huairong, 2020. "Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology," Energy, Elsevier, vol. 203(C).
    19. Morsy, Fatthy Mohamed, 2015. "CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system," Energy, Elsevier, vol. 87(C), pages 594-604.
    20. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:499-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.