IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v54y2013icp302-314.html
   My bibliography  Save this article

A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis

Author

Listed:
  • Raman, P.
  • Ram, N.K.
  • Gupta, Ruchi

Abstract

The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100mgNm−3.Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators.

Suggested Citation

  • Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
  • Handle: RePEc:eee:energy:v:54:y:2013:i:c:p:302-314
    DOI: 10.1016/j.energy.2013.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213002077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henriksen, Ulrik & Ahrenfeldt, Jesper & Jensen, Torben Kvist & Gøbel, Benny & Bentzen, Jens Dall & Hindsgaul, Claus & Sørensen, Lasse Holst, 2006. "The design, construction and operation of a 75kW two-stage gasifier," Energy, Elsevier, vol. 31(10), pages 1542-1553.
    2. Hamel, Stefan & Hasselbach, Holger & Weil, Steffen & Krumm, Wolfgang, 2007. "Autothermal two-stage gasification of low-density waste-derived fuels," Energy, Elsevier, vol. 32(2), pages 95-107.
    3. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    4. Chaurey, A. & Kandpal, T.C., 2009. "Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance," Energy Policy, Elsevier, vol. 37(1), pages 115-125, January.
    5. Datta, Amitava & Ganguly, Ranjan & Sarkar, Luna, 2010. "Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation," Energy, Elsevier, vol. 35(1), pages 341-350.
    6. D’Alessandro, Bruno & D’Amico, Michele & Desideri, Umberto & Fantozzi, Francesco, 2013. "The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration," Applied Energy, Elsevier, vol. 101(C), pages 423-431.
    7. Bhattacharya, S.C & Mizanur Rahman Siddique, A.H.Md & Pham, Hoang-Luong, 1999. "A study on wood gasification for low-tar gas production," Energy, Elsevier, vol. 24(4), pages 285-296.
    8. Chun, Young Nam & Kim, Seong Cheon & Yoshikawa, Kunio, 2011. "Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier," Applied Energy, Elsevier, vol. 88(4), pages 1105-1112, April.
    9. Bhattacharya, S.C. & Jana, Chinmoy, 2009. "Renewable energy in India: Historical developments and prospects," Energy, Elsevier, vol. 34(8), pages 981-991.
    10. Ghosh, Sonaton & Das, Tuhin K. & Jash, Tushar, 2004. "Sustainability of decentralized woodfuel-based power plant: an experience in India," Energy, Elsevier, vol. 29(1), pages 155-166.
    11. Plis, P. & Wilk, R.K., 2011. "Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier," Energy, Elsevier, vol. 36(6), pages 3838-3845.
    12. Dogru, M. & Howarth, C.R. & Akay, G. & Keskinler, B. & Malik, A.A., 2002. "Gasification of hazelnut shells in a downdraft gasifier," Energy, Elsevier, vol. 27(5), pages 415-427.
    13. Bhattacharyya, Subhes C., 2006. "Energy access problem of the poor in India: Is rural electrification a remedy?," Energy Policy, Elsevier, vol. 34(18), pages 3387-3397, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    2. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    3. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    4. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    5. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    6. Chiang, Kung-Yuh & Lu, Cheng-Han & Lin, Ming-Hui & Chien, Kuang-Li, 2013. "Reducing tar yield in gasification of paper-reject sludge by using a hot-gas cleaning system," Energy, Elsevier, vol. 50(C), pages 47-53.
    7. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    8. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    9. Rolandas Paulauskas & Kęstutis Zakarauskas & Nerijus Striūgas, 2021. "An Intensification of Biomass and Waste Char Gasification in a Gasifier," Energies, MDPI, vol. 14(7), pages 1-11, April.
    10. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    11. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    12. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    13. Sharma, Avdhesh Kr., 2009. "Experimental study on 75kWth downdraft (biomass) gasifier system," Renewable Energy, Elsevier, vol. 34(7), pages 1726-1733.
    14. Palit, Debajit & Sovacool, Benjamin K. & Cooper, Christopher & Zoppo, David & Eidsness, Jay & Crafton, Meredith & Johnson, Katie & Clarke, Shannon, 2013. "The trials and tribulations of the Village Energy Security Programme (VESP) in India," Energy Policy, Elsevier, vol. 57(C), pages 407-417.
    15. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Zeng, Xi & Wang, Fang & Li, Hongling & Wang, Yin & Dong, Li & Yu, Jian & Xu, Guangwen, 2014. "Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier," Applied Energy, Elsevier, vol. 115(C), pages 9-16.
    17. Pulla Rose Havilah & Amit Kumar Sharma & Gopalakrishnan Govindasamy & Leonidas Matsakas & Alok Patel, 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas," Energies, MDPI, vol. 15(11), pages 1-19, May.
    18. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    19. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun, 2010. "Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics," Energy, Elsevier, vol. 35(5), pages 2210-2222.
    20. Vera, David & Jurado, Francisco & Carpio, José & Kamel, Salah, 2018. "Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry," Energy, Elsevier, vol. 144(C), pages 41-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:54:y:2013:i:c:p:302-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.