IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006264.html
   My bibliography  Save this article

Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow

Author

Listed:
  • Zhu, Yunyi
  • Xie, Bin
  • Wang, Anqi
  • Qian, Zheng

Abstract

Effective wind turbine (WT) condition monitoring is significant to improve wind power generation efficiency and reduce operation and maintenance costs. Supervisory control and data acquisition (SCADA) data are widely utilized for WT condition monitoring due to their low cost and accessibility. However, the intricate interdependencies among SCADA variables affect the accuracy of WT fault detection, and few methods provide identification for the anomaly cause. To solve these issues, this paper proposes an unsupervised fault detection and identification method based on self-attention-based dynamic graph representation learning and variable-level normalizing flow. Firstly, a dynamic graph representation learning model based on spatial and temporal self-attention mechanisms is proposed. It can effectively learn the dynamic and mutual relations among variables for early fault detection. Secondly, a variable-level normalizing flow is proposed for discriminative density estimation of variables, which can realize component fault localization. Finally, a node deviation index based on contrast graph is proposed to identify the root cause of anomalies. Experimental results using WT data from a wind farm in Northwest China prove that the proposed method has better accuracy and interpretability in WT fault detection and identification, which displays better effectiveness in practical wind energy applications.

Suggested Citation

  • Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006264
    DOI: 10.1016/j.ress.2024.110554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.