Detecting wind turbine anomalies using nonlinear dynamic parameters-assisted machine learning with normal samples
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2023.109092
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sabri-Laghaie, Kamyar & Fathi, Mahdi & Zio, Enrico & Mazhar, Maryam, 2022. "A novel reliability monitoring scheme based on the monitoring of manufacturing quality error rates," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
- Ding, Yifei & Zhuang, Jichao & Ding, Peng & Jia, Minping, 2022. "Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Leimeister, Mareike & Kolios, Athanasios, 2021. "Reliability-based design optimization of a spar-type floating offshore wind turbine support structure," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Yan, Xiaoan & Liu, Ying & Xu, Yadong & Jia, Minping, 2021. "Multichannel fault diagnosis of wind turbine driving system using multivariate singular spectrum decomposition and improved Kolmogorov complexity," Renewable Energy, Elsevier, vol. 170(C), pages 724-748.
- González-Muñiz, Ana & DÃaz, Ignacio & Cuadrado, Abel A. & GarcÃa-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Global contextual residual convolutional neural networks for motor fault diagnosis under variable-speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Rasay, Hasan & Taghipour, Sharareh & Sharifi, Mani, 2022. "An integrated Maintenance and Statistical Process Control Model for a Deteriorating Production Process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
- Liu, Shujie & Fan, Lexian, 2022. "An adaptive prediction approach for rolling bearing remaining useful life based on multistage model with three-source variability," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Melani, Arthur Henrique de Andrade & Michalski, Miguel Angelo de Carvalho & da Silva, Renan Favarão & de Souza, Gilberto Francisco Martha, 2021. "A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
- Hardin, Johanna & Rocke, David M., 2004. "Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 625-638, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Yan-Fu & Zhao, Wei & Zhang, Chen & Ye, Jiantao & He, Huiru, 2024. "A study on the prediction of service reliability of wireless telecommunication system via distribution regression," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Zhu, Dongping & Huang, Xiaogang & Ding, Zhixia & Zhang, Wei, 2024. "Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
- Hendradewa, Andrie Pasca & Yin, Shen, 2025. "Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Li, Sheng & Ji, J.C. & Xu, Yadong & Sun, Xiuquan & Feng, Ke & Sun, Beibei & Wang, Yulin & Gu, Fengshou & Zhang, Ke & Ni, Qing, 2023. "IFD-MDCN: Multibranch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Fang, Xiaoyu & Qu, Jianfeng & Chai, Yi, 2023. "Self-supervised intermittent fault detection for analog circuits guided by prior knowledge," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Zhou, Chengyu & Fang, Xiaolei, 2023. "A convex two-dimensional variable selection method for the root-cause diagnostics of product defects," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, EurÃpedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Han, Fucheng & Wang, Wenhua & Zheng, Xiao-Wei & Han, Xu & Shi, Wei & Li, Xin, 2025. "Investigation of essential parameters for the design of offshore wind turbine based on structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
- Zhao, Shuaiyu & Duan, Yiling & Roy, Nitin & Zhang, Bin, 2024. "A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
- Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
- Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Zhou, Han & Yin, Hongpeng & Chai, Yi, 2023. "Multi-grained mode partition and robust fault diagnosis for multimode industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Chen, Yuejian & Liu, Xuemei & Rao, Meng & Qin, Yong & Wang, Zhipeng & Ji, Yuanjin, 2025. "Explicit speed-integrated LSTM network for non-stationary gearbox vibration representation and fault detection under varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
- Liu, Dongdong & Cui, Lingli & Cheng, Weidong, 2023. "Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation," Renewable Energy, Elsevier, vol. 206(C), pages 645-657.
- Wang, Huan & Li, Yan-Fu, 2023. "Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Wang, Yilin & Li, Yuanxiang & Zhang, Yuxuan & Lei, Jia & Yu, Yifei & Zhang, Tongtong & Yang, Yongshen & Zhao, Honghua, 2024. "Incorporating prior knowledge into self-supervised representation learning for long PHM signal," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Wei, Yujie & Pan, Ershun & Ye, Zhi-Sheng, 2024. "Condition monitoring based on corrupted multiple time series with common trends," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
- Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
More about this item
Keywords
Condition monitoring; Anomaly detection; Rotating machine; Wind turbine; Generalized multiscale Poincare plots; SVDD;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:233:y:2023:i:c:s0951832023000078. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.