IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v231y2023ics0951832022006408.html
   My bibliography  Save this article

An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models

Author

Listed:
  • Coraça, Eduardo M.
  • Ferreira, Janito V.
  • Nóbrega, Eurípedes G.O.

Abstract

Vibration-based structural health monitoring (SHM) has traditionally been based on the variation of modal properties. Nowadays engineering structures require multiple sensors for reliable monitoring, which implies analyzing large volumes of data and demands the development of machine learning methods. As such, deep learning techniques applied to vibration have emerged recently, and successful applications have been reported for pattern identification from high-dimensional data. However, a lack of expert annotated labels related to damage conditions in real structures hinders the use of supervised techniques, which motivates the development of unsupervised methods. An unsupervised framework is here proposed that combines Variational Autoencoders (VAE) and a Hidden Markov Model (HMM), aiming to learn a degradation model and classify the state evolution from measured vibration signals. The proposed method is assessed using the IMS bearing dataset and an experimental dataset. A scaled prototype of a cable-stayed electrical transmission tower was monitored for eight weeks, while it has been subjected to progressive cable slack scenarios. Results show that the VAE successfully embedded the data to a feature space where it was possible to learn a degradation model, which indicates that the combination of VAE with HMM is a promising solution for SHM.

Suggested Citation

  • Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, Eurípedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022006408
    DOI: 10.1016/j.ress.2022.109025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022006408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2022. "A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Soleimani, Morteza & Campean, Felician & Neagu, Daniel, 2021. "Integration of Hidden Markov Modelling and Bayesian Network for fault detection and prediction of complex engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Yu, Wennian & Kim, II Yong & Mechefske, Chris, 2020. "An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    6. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Zhao, Yunfei & Gao, Wei & Smidts, Carol, 2021. "Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2021. "Learning the health index of complex systems using dynamic conditional variational autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Xu, Fan & Yang, Fangfang & Fei, Zicheng & Huang, Zhelin & Tsui, Kwok-Leung, 2021. "Life prediction of lithium-ion batteries based on stacked denoising autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chen & Xia, Yuanqing, 2024. "Interval Pareto front-based multi-objective robust optimization for sensor placement in structural modal identification," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Gámiz, M.L. & Navas-Gómez, F. & Raya-Miranda, R. & Segovia-García, M.C., 2023. "Dynamic reliability and sensitivity analysis based on HMM models with Markovian signal process," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Wang, Mengmeng & Incecik, Atilla & Feng, Shizhe & Gupta, M.K. & Królczyk, Grzegorz & Li, Z, 2023. "Damage identification of offshore jacket platforms in a digital twin framework considering optimal sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Zhao, Shuaiyu & Duan, Yiling & Roy, Nitin & Zhang, Bin, 2024. "A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Leoni, Leonardo & De Carlo, Filippo & Abaei, Mohammad Mahdi & BahooToroody, Ahmad & Tucci, Mario, 2023. "Failure diagnosis of a compressor subjected to surge events: A data-driven framework," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Gámiz, M.L. & Navas-Gómez, F. & Raya-Miranda, R. & Segovia-García, M.C., 2023. "Dynamic reliability and sensitivity analysis based on HMM models with Markovian signal process," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. He, Jiahui & Cheng, Zhijun & Guo, Bo, 2024. "Anomaly detection in telemetry data using a jointly optimal one-class support vector machine with dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Liu, Jie & Zheng, Shuwen & Wang, Chong, 2023. "Causal Graph Attention Network with Disentangled Representations for Complex Systems Fault Detection," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "Parallel State Fusion LSTM-based Early-cycle Stage Lithium-ion Battery RUL Prediction Under Lebesgue Sampling Framework," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Floreale, Giovanni & Baraldi, Piero & Lu, Xuefei & Rossetti, Paolo & Zio, Enrico, 2024. "Sensitivity analysis by differential importance measure for unsupervised fault diagnostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Li, Tianmei & Pei, Hong & Si, Xiaosheng & Lei, Yaguo, 2023. "Prognosis for stochastic degrading systems with massive data: A data-model interactive perspective," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Shao, Kaixuan & He, Yigang & Xing, Zhikai & Du, Bolun, 2023. "Detecting wind turbine anomalies using nonlinear dynamic parameters-assisted machine learning with normal samples," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022006408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.