IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics095183202400454x.html
   My bibliography  Save this article

Empirical study on fine-tuning pre-trained large language models for fault diagnosis of complex systems

Author

Listed:
  • Zheng, Shuwen
  • Pan, Kai
  • Liu, Jie
  • Chen, Yunxia

Abstract

With increasing complexity and interconnectivity of the modern industrial systems, effectively diagnosing faults is a core step to Prognostic and Health Management (PHM). Language models, particularly Large Language Models (LLMs) that pre-trained on massive corpora, have demonstrated remarkable capabilities in Natural Language Processing (NLP) and its related downstream tasks. However, how to leverage these models for facilitating system fault diagnosis and verify its effectiveness is rarely explored. This paper incorporates the potential comprehension ability of pre-trained LLMs, and investigates the efficacy of fine-tuning LLMs for realizing efficient system fault diagnosis. The experiments conducted in this study involve both open-source and closed-source models, and utilize a simulation and a real fault diagnosis dataset. We find that these models consistently achieve high performance across various metrics compared to the baselines. Additionally, qualitative and quantitative analysis is performed to investigate several aspects of the approach, such as the impact of dataset size, data normalization, missing values and explainability of the diagnosis, further showcasing the potential as well as limitations of the approach.

Suggested Citation

  • Zheng, Shuwen & Pan, Kai & Liu, Jie & Chen, Yunxia, 2024. "Empirical study on fine-tuning pre-trained large language models for fault diagnosis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s095183202400454x
    DOI: 10.1016/j.ress.2024.110382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400454X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karan Singhal & Shekoofeh Azizi & Tao Tu & S. Sara Mahdavi & Jason Wei & Hyung Won Chung & Nathan Scales & Ajay Tanwani & Heather Cole-Lewis & Stephen Pfohl & Perry Payne & Martin Seneviratne & Paul G, 2023. "Publisher Correction: Large language models encode clinical knowledge," Nature, Nature, vol. 620(7973), pages 19-19, August.
    2. Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Li, Sai & Peng, Yanfeng & Shen, Yiping & Zhao, Sibo & Shao, Haidong & Bin, Guangfu & Guo, Yong & Yang, Xingkai & Fan, Chao, 2024. "Rolling Bearing Fault Diagnosis Under Data Imbalance and Variable Speed Based on Adaptive Clustering Weighted Oversampling," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2022. "A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Liu, Jie & Zheng, Shuwen & Wang, Chong, 2023. "Causal Graph Attention Network with Disentangled Representations for Complex Systems Fault Detection," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Karan Singhal & Shekoofeh Azizi & Tao Tu & S. Sara Mahdavi & Jason Wei & Hyung Won Chung & Nathan Scales & Ajay Tanwani & Heather Cole-Lewis & Stephen Pfohl & Perry Payne & Martin Seneviratne & Paul G, 2023. "Large language models encode clinical knowledge," Nature, Nature, vol. 620(7972), pages 172-180, August.
    10. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Shang, Zuogang & Yan, Ruqiang & Chen, Xuefeng, 2023. "Explainability-driven model improvement for SOH estimation of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Liu, Jie & He, Zihan & Miao, Yonghao, 2024. "Causality-based adversarial attacks for robust GNN modelling with application in fault detection," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Floreale, Giovanni & Baraldi, Piero & Lu, Xuefei & Rossetti, Paolo & Zio, Enrico, 2024. "Sensitivity analysis by differential importance measure for unsupervised fault diagnostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Maxime Griot & Coralie Hemptinne & Jean Vanderdonckt & Demet Yuksel, 2025. "Large Language Models lack essential metacognition for reliable medical reasoning," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Ching-Nam Hang & Pei-Duo Yu & Roberto Morabito & Chee-Wei Tan, 2024. "Large Language Models Meet Next-Generation Networking Technologies: A Review," Future Internet, MDPI, vol. 16(10), pages 1-29, October.
    7. Yue, Ke & Li, Jipu & Deng, Shuhan & Kwoh, Chee Keong & Chen, Zhuyun & Li, Weihua, 2024. "A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    8. Liu, Ruonan & Xie, Yunfei & Lin, Di & Zhang, Weidong & Ding, Steven X., 2024. "Information-based Gradient enhanced Causal Learning Graph Neural Network for fault diagnosis of complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    9. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Li, Ying & Zhang, Lijie & Liang, Pengfei & Wang, Xiangfeng & Wang, Bin & Xu, Leitao, 2024. "Semi-supervised meta-path space extended graph convolution network for intelligent fault diagnosis of rotating machinery under time-varying speeds," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    11. Wang, Fujin & Wu, Ziqian & Zhao, Zhibin & Zhai, Zhi & Wang, Chenxi & Chen, Xuefeng, 2024. "Physical knowledge guided state of health estimation of lithium-ion battery with limited segment data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Zhou, Taotao & Zhang, Laibin & Han, Te & Droguett, Enrique Lopez & Mosleh, Ali & Chan, Felix T.S., 2023. "An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. van Kolfschooten, Hannah & van Oirschot, Janneke, 2024. "The EU Artificial Intelligence Act (2024): Implications for healthcare," Health Policy, Elsevier, vol. 149(C).
    14. Wang, Bin & Zio, Enrico & Chen, Xiuhan & Zhu, Hanhua & Guo, Yunhua & Fan, Shidong, 2024. "Reliability improvement of the dredging perception system: A sensor fault-tolerant strategy," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    15. Soroosh Tayebi Arasteh & Tianyu Han & Mahshad Lotfinia & Christiane Kuhl & Jakob Nikolas Kather & Daniel Truhn & Sven Nebelung, 2024. "Large language models streamline automated machine learning for clinical studies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Aizpurua, J.I. & Stewart, B.G. & McArthur, S.D.J. & Penalba, M. & Barrenetxea, M. & Muxika, E. & Ringwood, J.V., 2022. "Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Hossam A. Gabber & Omar S. Hemied, 2024. "Domain-Specific Large Language Model for Renewable Energy and Hydrogen Deployment Strategies," Energies, MDPI, vol. 17(23), pages 1-25, December.
    18. Pan, Junlin & Sun, Bo & Wu, Zeyu & Yi, Zechen & Feng, Qiang & Ren, Yi & Wang, Zili, 2024. "Probabilistic remaining useful life prediction without lifetime labels: A Bayesian deep learning and stochastic process fusion method," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    19. He, Jiahui & Cheng, Zhijun & Guo, Bo, 2024. "Anomaly detection in telemetry data using a jointly optimal one-class support vector machine with dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s095183202400454x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.