IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics095183202300786x.html
   My bibliography  Save this article

Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths

Author

Listed:
  • Zheng, Shuwen
  • Wang, Chong
  • Zio, Enrico
  • Liu, Jie

Abstract

Fault detection in mechatronic systems is crucial for their maintainability and safety. However, the systems monitoring variables are often abundant, with intricate connections. It is difficult to characterize their relationships and to extract effective features. In this paper, a hierarchical graph convolution attention network based on causal paths (HGCAN) is developed to improve the performance and interpretability of data-driven fault detection models in complex mechatronic systems. A hybrid causal discovery algorithm is introduced to discover the inherit causality among monitoring variables. The causal paths that sequentially connect the cause-effect variables serve as the reception fields to extract features using multiscale convolution. Different levels of the features are aggregated based on a hierarchical attention mechanism, which assigns adaptive weights considering the varied feature importance. To verify the effectiveness of the proposed method, a dataset of real high-speed train braking systems is considered. Experimental results demonstrate promising performance improvement of the proposed method, and analysis on interpretability indicates its potential to facilitate practical decision-making.

Suggested Citation

  • Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300786x
    DOI: 10.1016/j.ress.2023.109872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300786X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Daniel C. Castro & Ian Walker & Ben Glocker, 2020. "Causality matters in medical imaging," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Liu, Jie & Zheng, Shuwen & Wang, Chong, 2023. "Causal Graph Attention Network with Disentangled Representations for Complex Systems Fault Detection," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2022. "A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2021. "An Integrated Data and Knowledge Model Addressing Aleatory and Epistemic Uncertainty for Oil Condition Monitoring," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Guo, Junchao & He, Qingbo & Zhen, Dong & Gu, Fengshou & Ball, Andrew D., 2023. "Multi-sensor data fusion for rotating machinery fault detection using improved cyclic spectral covariance matrix and motor current signal analysis," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Liu, Jie & Xu, Yubo & Wang, Lisong, 2022. "Fault information mining with causal network for railway transportation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Rentong Chen & Chao Zhang & Shaoping Wang & Enrico Zio & Hongyan Dui & Yadong Zhang, 2023. "Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network," Post-Print hal-04103914, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xinglin & Xie, Luofeng & Deng, Bo & Lu, Houhong & Zhu, Yangyang & Yin, Ming & Yin, Guofu & Gao, Wenxiang, 2024. "Deep dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic mechanical seal," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jie & Zheng, Shuwen & Wang, Chong, 2023. "Causal Graph Attention Network with Disentangled Representations for Complex Systems Fault Detection," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Zaitseva, Elena & Levashenko, Vitaly & Rabcan, Jan, 2023. "A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Gjorgiev, Blazhe & Das, Laya & Merkel, Seline & Rohrer, Martina & Auger, Etienne & Sansavini, Giovanni, 2023. "Simulation-driven deep learning for locating faulty insulators in a power line," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. He, Jiahui & Cheng, Zhijun & Guo, Bo, 2024. "Anomaly detection in telemetry data using a jointly optimal one-class support vector machine with dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Glavind, Sebastian T. & Sepulveda, Juan G. & Faber, Michael H., 2022. "On a simple scheme for systems modeling and identification using big data techniques," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    10. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Wang, Bin & Zio, Enrico & Chen, Xiuhan & Zhu, Hanhua & Guo, Yunhua & Fan, Shidong, 2024. "Reliability improvement of the dredging perception system: A sensor fault-tolerant strategy," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Floreale, Giovanni & Baraldi, Piero & Lu, Xuefei & Rossetti, Paolo & Zio, Enrico, 2024. "Sensitivity analysis by differential importance measure for unsupervised fault diagnostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Ma, Zhonghai & Liao, Haitao & Gao, Jianhang & Nie, Songlin & Geng, Yugang, 2023. "Physics-Informed Machine Learning for Degradation Modeling of an Electro-Hydrostatic Actuator System," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Shen, Yang & Yang, Zhen & Guo, Li & Zhao, Xiaozhe & Duan, Yao, 2024. "Scenario mapping for critical infrastructure failure under typhoon rainfall: A dependency and causality approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    18. Sujin Park & Ali Tafti & Galit Shmueli, 2024. "Transporting Causal Effects Across Populations Using Structural Causal Modeling: An Illustration to Work-from-Home Productivity," Information Systems Research, INFORMS, vol. 35(2), pages 686-705, June.
    19. Kohtz, Sara & Zhao, Junhan & Renteria, Anabel & Lalwani, Anand & Xu, Yanwen & Zhang, Xiaolong & Haran, Kiruba Sivasubramaniam & Senesky, Debbie & Wang, Pingfeng, 2024. "Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Mingfei Li & Jiajian Wu & Zhengpeng Chen & Jiangbo Dong & Zhiping Peng & Kai Xiong & Mumin Rao & Chuangting Chen & Xi Li, 2022. "Data-Driven Voltage Prognostic for Solid Oxide Fuel Cell System Based on Deep Learning," Energies, MDPI, vol. 15(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300786x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.