IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005362.html
   My bibliography  Save this article

Causality-based adversarial attacks for robust GNN modelling with application in fault detection

Author

Listed:
  • Liu, Jie
  • He, Zihan
  • Miao, Yonghao

Abstract

Fault detection techniques based on graph neural networks have been a trending topic. With the issue of poor robustness, the accuracy relies highly on the quality of the monitoring data. Numerous scholars have come up with robust GNN models. However, the model's accuracy remains low when it comes to solving tasks like graph-level fault detection. In this work, the authors propose several causality-based adversarial attacks that are designed with reference to the principles of causal discovery algorithms for generating causal graph models and associated errors. The attack amplifies all possible types of raw errors present in the data, which allows the trained model to be robust and accurate enough to maintain high error detection accuracy with the proposed adversarial elimination regularization. A real dataset considering high-speed train braking system is considered as case study. Three typical graph neural network models including classical GCN, robust GCN and median GCN are taken as base models to verify the validity of the modelling framework. The results prove that the causality-based adversarial attacks proposed in this work can effectively improve all the base models’ robustness with low-quality monitoring data.

Suggested Citation

  • Liu, Jie & He, Zihan & Miao, Yonghao, 2024. "Causality-based adversarial attacks for robust GNN modelling with application in fault detection," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005362
    DOI: 10.1016/j.ress.2024.110464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Xia, Liqiao & Liang, Yongshi & Leng, Jiewu & Zheng, Pai, 2023. "Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Shi, Mingkuan & Ding, Chuancang & Wang, Rui & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2023. "Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    6. Kim, Yong Chae & Lee, Jinwook & Kim, Taehun & Baek, Jonghwa & Ko, Jin Uk & Jung, Joon Ha & Youn, Byeng D., 2024. "Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    7. He, Jiahui & Cheng, Zhijun & Guo, Bo, 2024. "Anomaly detection in telemetry data using a jointly optimal one-class support vector machine with dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Yan, Haodong & Li, Fudong & Chen, Jinglong & Liu, Zijun & Wang, Jun & Feng, Yong & Zhang, Xinwei, 2023. "A graph embedded in graph framework with dual-sequence input for efficient anomaly detection of complex equipment under insufficient samples," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    10. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    12. Kaibo Zhou & Chaoying Yang & Jie Liu & Qi Xu, 2023. "Deep graph feature learning-based diagnosis approach for rotating machinery using multi-sensor data," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1965-1974, April.
    13. Liu, Jie & Zheng, Shuwen & Wang, Chong, 2023. "Causal Graph Attention Network with Disentangled Representations for Complex Systems Fault Detection," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    16. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Zhou, Han & Yin, Hongpeng & Chai, Yi, 2023. "Multi-grained mode partition and robust fault diagnosis for multimode industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Yang, Jingyu & Yue, Zuogong & Yuan, Ye, 2023. "Deep probabilistic graphical modeling for robust multivariate time series anomaly detection with missing data," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    19. Huang, Keke & Tao, Shijun & Wu, Dehao & Yang, Chunhua & Gui, Weihua, 2024. "Robust condition identification against label noise in industrial processes based on trusted connection dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    20. Li, Xinglin & Xie, Luofeng & Deng, Bo & Lu, Houhong & Zhu, Yangyang & Yin, Ming & Yin, Guofu & Gao, Wenxiang, 2024. "Deep dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic mechanical seal," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Liu, Ruonan & Zhang, Quanhu & Lin, Di & Zhang, Weidong & Ding, Steven X., 2024. "Causal intervention graph neural network for fault diagnosis of complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Zheng, Shuwen & Pan, Kai & Liu, Jie & Chen, Yunxia, 2024. "Empirical study on fine-tuning pre-trained large language models for fault diagnosis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Wang, Haoyu & Li, Chuanjiang & Ding, Peng & Li, Shaobo & Li, Tandong & Liu, Chenyu & Zhang, Xiangjie & Hong, Zejian, 2024. "A novel transformer-based few-shot learning method for intelligent fault diagnosis with noisy labels under varying working conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    5. Liu, Ruonan & Xie, Yunfei & Lin, Di & Zhang, Weidong & Ding, Steven X., 2024. "Information-based Gradient enhanced Causal Learning Graph Neural Network for fault diagnosis of complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    6. Zhu, Hongyan & Shen, Changqing & Li, Lin & Wang, Dong & Huang, Weiguo & Zhu, Zhongkui, 2024. "Reserving embedding space for new fault types: A new continual learning method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    7. Huo, Xiaosen & Yin, Yuan & Jiao, Liudan & Zhang, Yu, 2024. "A data-driven and knowledge graph-based analysis of the risk hazard coupling mechanism in subway construction accidents," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    8. Azari, Mehdi Saman & Santini, Stefania & Edrisi, Farid & Flammini, Francesco, 2025. "Self-adaptive fault diagnosis for unseen working conditions based on digital twins and domain generalization," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    9. Liang, Pengfei & Wang, Xiangfeng & Ai, Chao & Hou, Dongming & Liu, Siyuan, 2025. "SRSGCN: A novel multi-sensor fault diagnosis method for hydraulic axial piston pump with limited data," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    11. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Li, Xinglin & Xie, Luofeng & Deng, Bo & Lu, Houhong & Zhu, Yangyang & Yin, Ming & Yin, Guofu & Gao, Wenxiang, 2024. "Deep dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic mechanical seal," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Zhang, Jianping & Zhang, Yinjie & Fu, Jian & Zhao, Dawen & Liu, Ping & Zhang, Zhiwei, 2024. "Capacity fading knee-point recognition method and life prediction for lithium-ion batteries using segmented capacity degradation model," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    15. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Yue, Ke & Li, Jipu & Deng, Shuhan & Kwoh, Chee Keong & Chen, Zhuyun & Li, Weihua, 2024. "A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    18. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    19. Li, Qikang & Tang, Baoping & Deng, Lei & Yang, Qichao & Zhu, Peng, 2024. "Adaptive centroid prototype-based domain adaptation for fault diagnosis of rotating machinery without source data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.