IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006312.html
   My bibliography  Save this article

Anomaly detection in telemetry data using a jointly optimal one-class support vector machine with dictionary learning

Author

Listed:
  • He, Jiahui
  • Cheng, Zhijun
  • Guo, Bo

Abstract

Anomaly detection based on telemetry data is a major issue in satellite health monitoring, given that it can identify unusual or unexpected events to avoid serious accidents and ensure the safety and reliability of operations. This study proposes a jointly optimal one-class support vector machine with dictionary learning (JODL-OC) framework for multivariate anomaly detection in telemetry. Dictionary learning (DL) extracts the correlation and local dynamics of time series into a sparse matrix, and the one-class support vector machine (OCSVM) detects anomalies in the transformed sparse space. The optimisation objective of DL is modified by introducing a novel regularisation term called soft-boundary OCSVM, so that the JODL-OC seamlessly integrates DL, sparse representation, and classifier training into a unified model to jointly learn the features and decision boundary. Furthermore, we propose an iterative approach to solve the optimisation function and obtain the optimal JODL-OC framework for anomaly detection. A case analysis based on satellite antenna telemetry data reveals that the proposed method improves the detection precision, F1-score, FPR and FAR compared to other existing anomaly detection methods, particularly to illustrate the superior performance in correlation anomalies.

Suggested Citation

  • He, Jiahui & Cheng, Zhijun & Guo, Bo, 2024. "Anomaly detection in telemetry data using a jointly optimal one-class support vector machine with dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006312
    DOI: 10.1016/j.ress.2023.109717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Rui & Verhagen, Wim J.C. & Curran, Richard, 2020. "A systematic methodology for Prognostic and Health Management system architecture definition," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Jiao, Jinyang & Zhao, Ming & Lin, Jing & Liang, Kaixuan, 2019. "Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 41-54.
    4. Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2022. "A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Compare, Michele & Bellani, Luca & Zio, Enrico, 2017. "Reliability model of a component equipped with PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 4-11.
    6. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Zhang, Liangwei & Lin, Jing & Shao, Haidong & Zhang, Zhicong & Yan, Xiaohui & Long, Jianyu, 2021. "End-to-end unsupervised fault detection using a flow-based model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Liu, Junqiang & Pan, Chunlu & Lei, Fan & Hu, Dongbin & Zuo, Hongfu, 2021. "Fault prediction of bearings based on LSTM and statistical process analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Keke & Tao, Shijun & Wu, Dehao & Yang, Chunhua & Gui, Weihua, 2024. "Robust condition identification against label noise in industrial processes based on trusted connection dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Floreale, Giovanni & Baraldi, Piero & Lu, Xuefei & Rossetti, Paolo & Zio, Enrico, 2024. "Sensitivity analysis by differential importance measure for unsupervised fault diagnostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, Eurípedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Compare, Michele & Antonello, Federico & Pinciroli, Luca & Zio, Enrico, 2022. "A general model for life-cycle cost analysis of Condition-Based Maintenance enabled by PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    11. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2022. "A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Wang, Bin & Zio, Enrico & Chen, Xiuhan & Zhu, Hanhua & Guo, Yunhua & Fan, Shidong, 2024. "Reliability improvement of the dredging perception system: A sensor fault-tolerant strategy," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    16. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Zhang, Liangwei & Lin, Jing & Shao, Haidong & Zhang, Zhicong & Yan, Xiaohui & Long, Jianyu, 2021. "End-to-end unsupervised fault detection using a flow-based model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Yan, Shen & Shao, Haidong & Min, Zhishan & Peng, Jiangji & Cai, Baoping & Liu, Bin, 2023. "FGDAE: A new machinery anomaly detection method towards complex operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Ma, Chenyang & Li, Yongbo & Wang, Xianzhi & Cai, Zhiqiang, 2023. "Early fault diagnosis of rotating machinery based on composite zoom permutation entropy," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.