Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.117925
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Wenxian & Little, Christian & Court, Richard, 2014. "S-Transform and its contribution to wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 62(C), pages 137-146.
- Ren, He & Liu, Wenyi & Shan, Mengchen & Wang, Xin & Wang, Zhengfeng, 2021. "A novel wind turbine health condition monitoring method based on composite variational mode entropy and weighted distribution adaptation," Renewable Energy, Elsevier, vol. 168(C), pages 972-980.
- Renström, Niklas & Bangalore, Pramod & Highcock, Edmund, 2020. "System-wide anomaly detection in wind turbines using deep autoencoders," Renewable Energy, Elsevier, vol. 157(C), pages 647-659.
- Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
- Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
- Yang, Chunzhen & Liu, Jingquan & Zeng, Yuyun & Xie, Guangyao, 2019. "Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model," Renewable Energy, Elsevier, vol. 133(C), pages 433-441.
- Zhao, Hongshan & Liu, Huihai & Hu, Wenjing & Yan, Xihui, 2018. "Anomaly detection and fault analysis of wind turbine components based on deep learning network," Renewable Energy, Elsevier, vol. 127(C), pages 825-834.
- Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
- Castellani, Francesco & Astolfi, Davide & Sdringola, Paolo & Proietti, Stefania & Terzi, Ludovico, 2017. "Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment," Applied Energy, Elsevier, vol. 185(P2), pages 1076-1086.
- Gao, Q.W. & Liu, W.Y. & Tang, B.P. & Li, G.J., 2018. "A novel wind turbine fault diagnosis method based on intergral extension load mean decomposition multiscale entropy and least squares support vector machine," Renewable Energy, Elsevier, vol. 116(PA), pages 169-175.
- Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
- Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
- Qu, Fuming & Liu, Jinhai & Zhu, Hongfei & Zhou, Bowen, 2020. "Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic," Applied Energy, Elsevier, vol. 262(C).
- Kong, Ziqian & Tang, Baoping & Deng, Lei & Liu, Wenyi & Han, Yan, 2020. "Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units," Renewable Energy, Elsevier, vol. 146(C), pages 760-768.
- Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.
- Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
- Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
- Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Qu, Fuming & Liu, Jinhai & Zhu, Hongfei & Zhou, Bowen, 2020. "Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic," Applied Energy, Elsevier, vol. 262(C).
- Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
- Jastrzebska, Agnieszka & Morales Hernández, Alejandro & Nápoles, Gonzalo & Salgueiro, Yamisleydi & Vanhoof, Koen, 2022. "Measuring wind turbine health using fuzzy-concept-based drifting models," Renewable Energy, Elsevier, vol. 190(C), pages 730-740.
- Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
- Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
- Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
- Feng, Chenlong & Liu, Chao & Jiang, Dongxiang, 2023. "Unsupervised anomaly detection using graph neural networks integrated with physical-statistical feature fusion and local-global learning," Renewable Energy, Elsevier, vol. 206(C), pages 309-323.
- Mian Du & Jun Yi & Peyman Mazidi & Lin Cheng & Jianbo Guo, 2017. "A Parameter Selection Method for Wind Turbine Health Management through SCADA Data," Energies, MDPI, vol. 10(2), pages 1-14, February.
- Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
- Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
- Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
- Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
- Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
- Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
More about this item
Keywords
Condition monitoring; Wind turbine; Cascaded deep learning networks; Quartile; Attention mechanism;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012368. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.