IDEAS home Printed from https://ideas.repec.org/a/vra/journl/v9y2020i2p124-135.html
   My bibliography  Save this article

Use of Factors Related to the Consumption of Fast Moving Consumer Goods in Business Intelligence System for Managing Orders to Suppliers in Retail Chain

Author

Listed:
  • Daniela Pencheva

    (University of Economics - Varna, Varna, Bulgaria)

Abstract

The study examines some aspects related to current trends in the modeling of business intelligent systems (BIS) specializing in retail chains for Fast Moving Consumer Goods (FMCG). Current concepts related to factors that influence business processes and their application in business intelligent order management systems in retail chains for FMCG are presented. The aim of the present study is to investigate the factors that have the strongest influence on the consumption of FMCG in retail chains and to derive the values that support business-intelligent processes for automated order management to suppliers. The studied factors presented in the presentation also include consideration of the structure of the incoming data streams, their extraction and their application in practice.

Suggested Citation

  • Daniela Pencheva, 2020. "Use of Factors Related to the Consumption of Fast Moving Consumer Goods in Business Intelligence System for Managing Orders to Suppliers in Retail Chain," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 9(2), pages 124-135, August.
  • Handle: RePEc:vra:journl:v:9:y:2020:i:2:p:124-135
    DOI: 10.36997/IJUSV-ESS/2020.9.2.124
    as

    Download full text from publisher

    File URL: http://su-varna.org/journal/IJUSV-ESS/2020.9.2/124-135.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.36997/IJUSV-ESS/2020.9.2.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Emilia VASILE & Ion CROITORU & Danut Octavian SIMION, 2016. "Using Information Systems In Decisions For Businesses," Internal Auditing and Risk Management, Athenaeum University of Bucharest, vol. 43(1), pages 91-106, September.
    3. Emilia Vasile & Ion Croitoru & Dănuţ-Octavian Simion, 2016. "Using Information Systems in Business Decisions," Proceedings of Harvard Square Symposium, The Phenomenon of Migration, August 22-23, 2016 2, Research Association for Interdisciplinary Studies.
    4. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    5. Boulden, James B., 1958. "Fitting the sales forecast to your firm," Business Horizons, Elsevier, vol. 1(1), pages 65-72.
    6. Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    2. Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
    3. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    4. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
    7. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
    8. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    9. Jiayun Wang & Shanshan Wu & Qingwei Jin & Yijun Wang & Can Chen, 2024. "Identifying Popular Products at an Early Stage of Sales Season for Apparel Industry," Interfaces, INFORMS, vol. 54(3), pages 282-296, May.
    10. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
    11. Ramos, Francisco López & Batres, Rafael & De-la-Cruz-Márquez, Cynthia Griselle & Anzures, Melina López, 2023. "Optimization models for nopal crop planning with land usage expansion and government subsidy," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    12. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    13. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    14. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    15. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    16. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    17. Azumah Karim & Ananda Omotukoh Kube & Bashiru Imoro Ibn Saeed, 2020. "Modeling of Monthly Meteorological Time Series," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(4), pages 1-8.
    18. Lalou Panagiota & Ponis Stavros T. & Efthymiou Orestis K., 2020. "Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming," Management & Marketing, Sciendo, vol. 15(2), pages 186-202, June.
    19. Anis Chariri & Indira Januarti, 2017. "Audit Committee Characteristics and Integrated Reporting:Empirical Study of Companies Listed on the Johannesburg Stock Exchange," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 305-318.
    20. Kusters, Ulrich & McCullough, B.D. & Bell, Michael, 2006. "Forecasting software: Past, present and future," International Journal of Forecasting, Elsevier, vol. 22(3), pages 599-615.

    More about this item

    Keywords

    Fast Moving Consumer Goods (FMCG); business intelligent system; retail chain; consumer behavior factors;
    All these keywords.

    JEL classification:

    • A12 - General Economics and Teaching - - General Economics - - - Relation of Economics to Other Disciplines

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vra:journl:v:9:y:2020:i:2:p:124-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Pavel Petrov (email available below). General contact details of provider: https://edirc.repec.org/data/uevecea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.