IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v303y2021i1d10.1007_s10479-020-03666-w.html
   My bibliography  Save this article

A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches

Author

Listed:
  • Majd Kharfan

    (Converse Inc.)

  • Vicky Wing Kei Chan

    (Google Hong Kong Ltd)

  • Tugba Firdolas Efendigil

    (Massachusetts Institute of Technology (MIT), Center for Transportation and Logistics)

Abstract

Companies in the fashion industry are struggling with forecasting demand due to the short-selling season, long lead times between the operations, huge product variety and ambiguity of demand information. The forecasting process is becoming more complicated by virtue of evolving retail technology trends. Demand volatility and speed are highly affected by e-commerce strategies as well as social media usage regards to varying customer preferences, short product lifecycles, obsolescence of the retail calendar, and lack of information for newly launched seasonal items. Consumers have become more demanding and less predictable in their purchasing behavior that expects high quality, guaranteed availability and fast delivery. Meeting high expectations of customers’ initiates with proper demand management. This study focuses on demand prediction with a data-driven perspective by both leveraging machine learning techniques and identifying significant predictor variables to help fashion retailers achieve better forecast accuracy. Prediction results obtained were compared to present the benefits of machine learning approaches. The proposed approach was applied by a leading fashion retail company to forecast the demand of newly launched seasonal products without historical data.

Suggested Citation

  • Majd Kharfan & Vicky Wing Kei Chan & Tugba Firdolas Efendigil, 2021. "A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches," Annals of Operations Research, Springer, vol. 303(1), pages 159-174, August.
  • Handle: RePEc:spr:annopr:v:303:y:2021:i:1:d:10.1007_s10479-020-03666-w
    DOI: 10.1007/s10479-020-03666-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03666-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03666-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomassey, Sébastien, 2010. "Sales forecasts in clothing industry: The key success factor of the supply chain management," International Journal of Production Economics, Elsevier, vol. 128(2), pages 470-483, December.
    2. Au, Kin-Fan & Choi, Tsan-Ming & Yu, Yong, 2008. "Fashion retail forecasting by evolutionary neural networks," International Journal of Production Economics, Elsevier, vol. 114(2), pages 615-630, August.
    3. Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
    4. Mostard, Julien & Teunter, Ruud & de Koster, René, 2011. "Forecasting demand for single-period products: A case study in the apparel industry," European Journal of Operational Research, Elsevier, vol. 211(1), pages 139-147, May.
    5. Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.
    6. Kogan, Konstantin & Herbon, Avi, 2008. "Production under periodic demand update prior to a single selling season: A decomposition approach," European Journal of Operational Research, Elsevier, vol. 184(1), pages 133-146, January.
    7. Thomassey, Sebastien & Happiette, Michel & Castelain, Jean Marie, 2005. "A short and mean-term automatic forecasting system--application to textile logistics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 275-284, February.
    8. Murat Kaya & Engin Yeşil & M. Furkan Dodurka & Sarven Sıradağ, 2014. "Fuzzy Forecast Combining for Apparel Demand Forecasting," Springer Books, in: Tsan-Ming Choi & Chi-Leung Hui & Yong Yu (ed.), Intelligent Fashion Forecasting Systems: Models and Applications, edition 127, chapter 0, pages 123-146, Springer.
    9. G. Di Pillo & V. Latorre & S. Lucidi & E. Procacci, 2016. "An application of support vector machines to sales forecasting under promotions," 4OR, Springer, vol. 14(3), pages 309-325, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Praveen Puram & Soumya Roy & Deepak Srivastav & Anand Gurumurthy, 2023. "Understanding the effect of contextual factors and decision making on team performance in Twenty20 cricket: an interpretable machine learning approach," Annals of Operations Research, Springer, vol. 325(1), pages 261-288, June.
    2. Yue Tan & Liyi Gu & Senyu Xu & Mingchao Li, 2024. "Supply Chain Inventory Management from the Perspective of “Cloud Supply Chain”—A Data Driven Approach," Mathematics, MDPI, vol. 12(4), pages 1-30, February.
    3. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
    4. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
    2. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    3. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    4. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
    5. Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.
    6. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    7. Lalou Panagiota & Ponis Stavros T. & Efthymiou Orestis K., 2020. "Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming," Management & Marketing, Sciendo, vol. 15(2), pages 186-202, June.
    8. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    9. NJ Matsoma & IM Ambe, 2016. "Factors Affecting Demand Planning in the South African Clothing Industry," Journal of Economics and Behavioral Studies, AMH International, vol. 8(5), pages 194-210.
    10. Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
    11. Rina Tanaka & Aya Ishigaki & Tomomichi Suzuki & Masato Hamada & Wataru Kawai, 2019. "Data Analysis of Shipment for Textiles and Apparel from Logistics Warehouse to Store Considering Disposal Risk," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    12. Shuyun Ren & Hau-Ling Chan & Pratibha Ram, 2017. "A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 335-355, October.
    13. Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
    14. Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
    15. Chandadevi Giri & Yan Chen, 2022. "Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry," Forecasting, MDPI, vol. 4(2), pages 1-17, June.
    16. Hong, Jungsik & Koo, Hoonyoung & Kim, Taegu, 2016. "Easy, reliable method for mid-term demand forecasting based on the Bass model: A hybrid approach of NLS and OLS," European Journal of Operational Research, Elsevier, vol. 248(2), pages 681-690.
    17. Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2022. "Classification-based model selection in retail demand forecasting," International Journal of Forecasting, Elsevier, vol. 38(1), pages 209-223.
    18. Mostard, Julien & Teunter, Ruud & de Koster, René, 2011. "Forecasting demand for single-period products: A case study in the apparel industry," European Journal of Operational Research, Elsevier, vol. 211(1), pages 139-147, May.
    19. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    20. Halkos, George & Kevork, Ilias, 2012. "Unbiased estimation of maximum expected profits in the Newsvendor Model: a case study analysis," MPRA Paper 40724, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:303:y:2021:i:1:d:10.1007_s10479-020-03666-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.